精英家教网 > 初中数学 > 题目详情
如图,一次函数y1=kx+1(k≠0)与反比例函数y2=
mx
(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
(3)当y1>y2时,请直接写出x的取值范围.
分析:(1)分别把A点坐标代入一次函数和反比例函数解析式求出k和m即可;
(2)利用直线l⊥x轴于点N(3,0)得到B、C点的横坐标,再利用(1)中的解析式可确定B与C点的纵坐标,然后利用三角形面积公式计算;
(3)先解方程组
y=x+1
y=
2
x
确定一次函数与反比例函数的另一个交点为(-2,-1),然后观察函数图象得到当-2<x<0或x>1时,y1>y2
解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,
∴一次函数解析式为y=x+1;
将A(1,2)代入反比例解析式得:m=2,
∴反比例解析式为y=
2
x

(2)作AE⊥x轴于E,如图,
设一次函数与x轴交于D点,令y=0,求出x=-1,
∴D点坐标为(-1,0),
∵A(1,2),
∴AE=2,OE=1,
将x=3代入一次函数y=x=1得y=4,
将x=3代入反比例y=
2
x
得y=
2
3

∴B(3,4),C(3,
2
3
),
∴S△ABC=
1
2
×(3-1)×(4-
2
3
)=
10
3

(3)解方程组
y=x+1
y=
2
x
x=-2
y=-1
x=1
y=2

∴一次函数与反比例函数的另一个交点为(-2,-1),
∴当-2<x<0或x>1时,y1>y2
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式以及三角形面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
的图象交于A、B两点,点A、B的横坐标分别为-2、1.当y1>y2时,自变量x的取值范围是(  )
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
mx
 
(m≠0)
的图象交于二、四象限内的A、B两点,过A作AC⊥x轴于点C,连接OA、OB、BC.已知OC=4,tan∠OAC=2,点B的纵坐标为-6.
(1)求反比例函数和直线AB的解析式;
(2)求四边形OACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b的图象与反比例函数y2=
mx
的图象相交于A、B两点,试利用图中条件,求y1和y2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b与反比例函数y2=-
6x
交于点A(m,6)、B(3,n).
(1)求一次函数的关系式;
(2)求△AOB的面积;
(3)直接写出y1>y2时x的取值范围.

查看答案和解析>>

同步练习册答案