精英家教网 > 初中数学 > 题目详情
19.下列各组命题不成立的是(  )
A.平行四边形的对边平行且相等
B.依次连结矩形各边中点所得的四边形是菱形
C.三角形的重心是三条中线的交点
D.对角线互相垂直平分的四边形是正方形

分析 根据平行四边形的性质对A进行判断;根据菱形的判定方法和矩形的性质对B进行判断;根据三角形重心的定义对C进行判断;根据正方形的判定方法对D进行判断.

解答 解:A、平行四边形的对边平行且相等,所以A选项为真命题;
B、依次连结矩形各边中点所得的四边形是菱形,所以B选项为真命题;
C、三角形的重心是三条中线的交点,所以C选项为真命题;
D、对角线互相垂直平分且相等的四边形是正方形,所以D选项为假命题.
故选D.

点评 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.关于x的不等式组$\left\{\begin{array}{l}{2x<3(x-3)+1}\\{\frac{3x+2}{4}>x+a}\end{array}\right.$有四个整数解,则a的取值范围是(  )
A.-$\frac{11}{4}$<a≤-$\frac{5}{2}$B.-$\frac{11}{4}$≤a≤-$\frac{5}{2}$C.-$\frac{11}{4}$≤a<-$\frac{5}{2}$D.-$\frac{11}{4}$<a<-$\frac{5}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知x-3y=-3,则-x+3y+2的值是(  )
A.5B.-5C.1D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列各式中,y是x反比例函数的是(  )
A.$\frac{1}{y}-\frac{1}{x}=1$B.$y=-\frac{3}{2x}$C.$y=\frac{2}{x+1}$D.$y=\frac{5}{x^2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知?ABCD的周长为24,AB=5,则BC=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.点A(1,a)、B(-1,b)、C(-2,c)在双曲线y=$\frac{k}{x}$(k<0)上,则a、b、c的大小关系为a<c<b.(用“<”号将a、b、c连结起来)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如果规定“*”所表示的运算为:a*b=$\frac{x}{a+b}$+$\frac{y}{(a+1)(b+1)}$.已知1*2=3,2*3=4,计算(-3)*(-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:Rt△ABC中,∠ABC=90°,AB=3,BC=4,以点A,点B为圆心的⊙A,⊙B外切,以点C为圆心的⊙C分别与⊙A,⊙B内切,求⊙A,⊙B,⊙C的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.当x取何值时,代数式-12x2-3x-5的值最大,并求出这个最大值.

查看答案和解析>>

同步练习册答案