精英家教网 > 初中数学 > 题目详情

如图,正比例函数y=kx(k≠0)的图象与反比例函数数学公式(m≠0)的图象交于A.B两点,作AC⊥OX轴于C.△AOC的面积是24且数学公式,点N的坐标是(-5,0),
求(1)求反比例函数与正比例函数的解析式;
(2)求△ANB的面积.

解:(1)∵
∴设OC=4x,AO=5x,
则AC==3x,
∵△AOC的面积是24,
•CA•CO=24,
×3x×4x=24,
解得:x=±2,
∵A在第四象限,
∴A(8,-6)
把A(8,-6)代入正比例函数y=kx中得;k=-
则正比例函数解析式为:y=-x,
把A(8,-6)代入反比例函数y=中得;m=-48,
则反比例函数解析式为:y=-

(2)∵A、B两点是反比例函数与正比例函数的交点,A(8,-6),
∴B(-8,6),
∵点N的坐标是(-5,0),
∴NO=5,
∴S△BNA=S△BNO+S△AON=×5×6+×5×6=30.
分析:(1)根据设OC=4x,AO=5x,再利用勾股定理算出AC=3x,然后根据△AOC的面积是24,求出x的值,进而得到A点坐标,再利用待定系数法求出反比例函数与正比例函数的解析式;
(2)A、B两点是反比例函数与正比例函数的交点,故A、B两点关于原点对称,根据A点坐标得到B点坐标,△ANB的面积可以表示为S△BNO+S△AON,再利用三角形的面积公式代入相应数值进行计算即可.
点评:此题主要考查了三角函数的应用,待定系数法求出函数解析式,以及三角形面积的求法,解决此题的关键是根据三角形的面积结合三角函数求出A点坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=
1
2
x
的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
1
x
的图象相交于A、C两点,过A作x轴的垂线,交x轴于点B,连接BC.若△ABC的面积为S,则(  )
A、S=1B、S=2
C、S=3D、S的值不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
5x
的图象相交于A、C两点,过A作x轴的垂线交x轴于B,连接BC,则△ABC的面积S=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正比例函数y=
1
2
x的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△AOM的面积为1,点B(-1,t)为反比例函数在第三象限图象上的点.
(1)求反比例函数的解析式;
(2)试求出点A、点B的坐标;
(3)在y轴上求一点P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,正比例函数y=k1x的图象与反比例函数y=
k2x
的图象相交于点A、B,点A 在第一象限,且点A 的横坐标为1,作AH垂直于x轴,垂足为点H,S△AOH=1.
(1)求AH的长;
(2)求这两个函数的解析式;
(3)如果△OAC是以OA为腰的等腰三角形,且点C在x轴上,求点C的坐标.

查看答案和解析>>

同步练习册答案