精英家教网 > 初中数学 > 题目详情

若二次函数y=x2+(a+17)x+38-a与反比例函数y=数学公式的交点是整点(横坐标和纵坐标都是整数的点),则正整数a的值是________.

39或12
分析:先联立两方程,得到关于x的一元二次方程,把此方程分解为两个因式积的形式,再根据一元二次方程根的判别式即可求解.
解答:联立方程组
消去y得,x2+(a+17)x+38-a=
即x3+(a+17)x2+(38-a)x-56=0,
当x=1时,x3+(a+17)x2+(38-a)x-56=0,
∴式子x3+(a+17)x2+(38-a)x-56中含有因式(x-1),
分解因式得(x-1)[x2+(a+18)x+56]=0,(1)
显然x1=1是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.
因为a是正整数,所以关于x的方程x2+(a+18)x+56=0,(2)
其判别式△=(a+18)2-224>0,它一定有两个不同的实数根.
而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,
因此它的判别式△=(a+18)2-224应该是一个完全平方数.
设(a+18)2-224=k2(其中k为非负整数),则(a+18)2-k2=224,即(a+18+k)(a+18-k)=224.
显然a+18+k与a+18-k的奇偶性相同,且a+18+k≥18,而224=112×2=56×4=28×8,
所以
解得
而a是正整数,所以只可能
故答案为:a=39或a=12.
点评:本题考查的是二次函数与反比例函数的交点问题、根的判别式、整数的奇偶性,涉及面较广,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y=
1
2
x
和y=-x+m,二次函数y=x2+px+q图象的顶点为M.
(1)若M恰在直线y=
1
2
x
与y=-x+m的交点处,试证明:无论m取何实数值,二次函数y=x2+px+q的图象与直线y=-x+m总有两个不同的交点;
(2)在(1)的条件下,若直线y=-x+m过点D(0,-3),求二次函数y=x2+px+q的表达式;
(3)在(2)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x轴的左交点为A,试在抛物线的对称轴上求点P,使得△PAC为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

若二次函数y=x2-2x-8的图象交x轴于A、B两点(A点在B点的左边),交y轴于点C,
(1)写出A、B、C三点的坐标;
(2)试求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

若二次函数y=x2-mx+6配方后为y=(x-2)2+k,则m,k的值分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

若二次函数y=x2+(k2-1)x+k-1与x轴的两个交点关于原点对称,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆)如图,平面直角坐标系中,以点C(2,
3
)为圆心,以2为半径的圆与x轴交于A,B两点.
(1)求A,B两点的坐标;
(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.

查看答案和解析>>

同步练习册答案