精英家教网 > 初中数学 > 题目详情
5.等腰梯形底角为α,以腰长为直径作圆与另一腰切于M,交较长底边AB于E,则$\frac{BE}{AE}$的值为(  )
A.2sinαcosαB.sinαC.cosαD.cos2α

分析 作EH⊥AD于H,连结OM、CE、OE,如图,设⊙O的半径为R,根据圆周角定理得到∠CEB=90°,再根据切线的性质得OM⊥AD,接着根据等腰梯形的性质得∠ABC=∠A=α,由于∠OEB=∠B=α,则∠OEB=∠A,所以OE∥AD,于是可判断四边形OMHE为正方形,得到HE=OE=R,根据锐角三角函数的定义,在Rt△AEH中得到AE=$\frac{R}{sinα}$,在Rt△BCE中得到BE=2Rcosα,然后计算$\frac{BE}{AE}$的值.

解答 解:作EH⊥AD于H,连结OM、CE、OE,如图,设⊙O的半径为R,
∵BC为直径,
∴∠CEB=90°,
∵AD为⊙O的切线,
∴OM⊥AD,
∵AB∥CD,AD=BC,
∴∠ABC=∠A=α,
∵OB=OE,
∴∠OEB=∠B=α,
∴∠OEB=∠A,
∴OE∥AD,
∴四边形OMHE为矩形,
而OM=OE,
∴四边形OMHE为正方形,
∴HE=OE=R,
在Rt△AEH中,∵sinA=$\frac{HE}{AE}$,
∴AE=$\frac{R}{sinα}$,
在Rt△BCE中,∵cosB=$\frac{BE}{BC}$,
∴BE=2Rcosα,
∴$\frac{BE}{AE}$=$\frac{2Rcosα}{\frac{R}{sinα}}$=2sinαcosα.
故选A.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.合理构造直角三角形,应用锐角三角函数的定义进行计算是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.(1)问题
如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.
(2)探究
如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用
请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.直线y=-3x+5不经过的象限为第三象限.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.不等式组$\left\{\begin{array}{l}{3x+4≥0}\\{\frac{1}{2}x-24≤1}\end{array}\right.$的所有整数解的积为0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:-32÷$\sqrt{3}$×$\frac{1}{tan60°}$+|$\sqrt{2}$-3|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;
(2)请你用(1)中推导出的公式来解决下列问题:
已知:如图,抛物线y=-x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、An-1,分别过这n-1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、Bn-1,设△OBA1、△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面积依次为S1、S2、S3、S4、…、Sn.
①当n=2013时,求s1+s2+s3+s4+…+s2013的值;
②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如果一个正整数数能写成两个连续非负偶数的平方差,我们就把这个数叫做奇异数.例如4=22-02,12=42-22,4和12就是奇异数,两个连续正偶数分别用2k+2和k表示(k是非负整数).
(1)小雷说一个奇异数一定是4的倍数,你能说出其中的理由吗?
(2)小华说:“不是所有的4倍数都是奇异数.”你认为她的说法对吗?若认为正确,举出一个不是奇异数的4的倍数.
(3)如果一个正整数数能写成两个连续非负奇数的平方差,我们就把这个数叫做美丽数.①若一个美丽数一定是m的倍数,m=8;
②m的倍数一定是(填是或不是)美丽数;
③是否存在一个正整数,它既是奇异数,又是美丽数?若存在,写出一个这样的数;若不存在,简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,已知直角梯形ABCD的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形ABCD的中位线长为(  )
A.4cmB.6cmC.8cmD.10cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知矩形ABCD,AB=8,BC=4,将它绕着点B按顺时针方向旋转α度(0<α≤180)得到矩形A1BC1D1,此时A1B,C1D1这两边所在的直线分别与CD边所在的直线相交于点P、Q,当DP:DQ=1:2时,DP的长为5或1+$\sqrt{11}$.

查看答案和解析>>

同步练习册答案