精英家教网 > 初中数学 > 题目详情
17.如果一个正整数数能写成两个连续非负偶数的平方差,我们就把这个数叫做奇异数.例如4=22-02,12=42-22,4和12就是奇异数,两个连续正偶数分别用2k+2和k表示(k是非负整数).
(1)小雷说一个奇异数一定是4的倍数,你能说出其中的理由吗?
(2)小华说:“不是所有的4倍数都是奇异数.”你认为她的说法对吗?若认为正确,举出一个不是奇异数的4的倍数.
(3)如果一个正整数数能写成两个连续非负奇数的平方差,我们就把这个数叫做美丽数.①若一个美丽数一定是m的倍数,m=8;
②m的倍数一定是(填是或不是)美丽数;
③是否存在一个正整数,它既是奇异数,又是美丽数?若存在,写出一个这样的数;若不存在,简要说明理由.

分析 (1)根据“奇异数”的定义,只需看能否把2k+2和2k这两个数写成两个连续偶数的平方差即可判断;
(2)运用平方差公式进行计算,进而判断即可;
(3)运用平方差公式进行计算,进而判断即可.

解答 解:(1)由题意得:(2k+2)2-(2k)2=4(2k+1),
所以奇异数一定是4的倍数;
(2)说法正确.4的偶数倍不是奇异数,如16=42-02不是奇异数;
(3)①m=8;
故答案为:8;
②是,
故答案为:是;
③不存在.因为奇异数一定是4的奇数倍,而美丽数是8的倍数,即是4的偶数倍,所以不存在既是奇异数又是美丽数的数.

点评 此题主要考查了平方差公式的应用,此题是一道新定义题目,熟练记忆平方差公式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t)频数百分比
2≤x<324%
3≤x<41224%
4≤x<51530%
5≤x<61020%
6≤x<7612%
7≤x<836%
8≤x<924%
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.等腰梯形底角为α,以腰长为直径作圆与另一腰切于M,交较长底边AB于E,则$\frac{BE}{AE}$的值为(  )
A.2sinαcosαB.sinαC.cosαD.cos2α

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知△ABC和△AED都是等腰直角三角形,∠AED=∠ACB=90°,连接BD、EC,点M、N分别为BD、EC的中点.
(1)当点E在AB上,且点C和点D重合时,如图(1),MN与EC的位置关系是MN⊥EC;
(2)当点E、D分别在AB、AC上,且点C与点D不重合时,如图(2).求证:MN⊥EC;
(3)在(2)的条件下,将Rt△AED绕点A逆时针旋转,使点D落在AB上,如图(3),则MN与EC的位置关系还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若代数式x2+2x-3的值为0,则2x2+4x+1的值为7.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若关于x的方程x2-2x+a=3的解为x=-2,则字母a的值为(  )
A.3B.5C.-5D.11

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如果一个角的两边分别平行于另一个角的两边,那么这两个角(  )
A.相等B.互补C.相等或互补D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=3,BE:EC=4:1,则线段DE的长为$\sqrt{10}$.

查看答案和解析>>

同步练习册答案