分析 由翻折易得△DFE≌△DCE,则DF=DC,∠DFE=∠C=90°,再由AD∥BC得∠DAF=∠AEB,根据AAS证出△ABE≌△DFA;则AE=AD,设CE=x,从而表示出BE,AE,再由勾股定理,求得DE.
解答 证明:由矩形ABCD,得∠B=∠C=90°,CD=AB,AD=BC,AD∥BC.
由△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处,得△DFE≌△DCE,
∴DF=DC,∠DFE=∠C=90°,
∴DF=AB,∠AFD=90°,
∴∠AFD=∠B,![]()
由AD∥BC得∠DAF=∠AEB,
∴在△ABE与△DFA中,
$\left\{\begin{array}{l}{∠AEB=∠DAF}\\{∠B=∠AFD}\\{AB=DF}\end{array}\right.$,
∴△ABE≌△DFA(AAS).
∵由EC:BE=1:4,
∴设CE=x,BE=4x,则AD=BC=5x,
由△ABE≌△DFA,得AF=BE=4x,
在Rt△ADF中,由勾股定理可得DF=3x,
又∵DF=CD=AB=3
∴x=1
在Rt△DCE中,DE=$\sqrt{E{C}^{2}+D{C}^{2}}$=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$.
故答案是:$\sqrt{10}$.
点评 本题考查了三角形的全等和勾股定理的应用,一定要熟练掌握全等三角形的判定方法和勾股定理的内容.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 计算日期 | 上期示度 | 本期示度 | 电量 | 金额(元) |
| 20110710 | 3 230 | 3 296 | 66 | 34.98 |
| 20110810 | 3 296 | 3 535 | 239 | 135.07 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3cm | B. | $2\sqrt{3}$cm | C. | $2\sqrt{5}$cm | D. | $\frac{10}{3}$cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com