精英家教网 > 初中数学 > 题目详情
2.节约1度电,可以减少0.785千克碳排放.某省从2011年6月1日起执行新的居民生活用电价格,一户一表居民用户将实施阶梯式累进电价:月用电量低于50千瓦时(含50千瓦时)部分不调整,电价每千瓦时0.53元;月用电量在51~200千瓦时部分,电价每千瓦时上调0.03元;月用电量超过200千瓦时部分,电价每千瓦时上调0.10元.小明家属一户一表居民用户,将实施阶梯式累进电价,7月份至8月份的电费缴款情况如下表:
计算日期上期示度本期示度电量金额(元)
201107103 2303 2966634.98
201108103 2963 535239135.07
(1)根据上述资料对阶梯式累进电价的描述,设电量为x千瓦时,金额为y元,表示出金额对于电量的函数关系,并画出图象.
(2)解释小明家8月份电费的计算详情.
(3)为节约用电,小明对以后制订了详细的用电计划,如果实际每天比计划多用2千瓦时,下月用电量将会超过240千瓦时;如果实际每天比计划节约2千瓦时,那么下月用电量将会不超过180千瓦时,下月(30天)每天用电量应控制在什么范围内?

分析 (1)读懂题意,列式得出关系式,进而画出图象;
(2)读懂题意,进而解释小明家8月份电费的计算详情即可;
(3)设下月小明家的用电量是x千瓦时,根据题意求解即可.

解答 解:(1)当x≤50时,y=0.53x;
当51≤x≤200时,y=(0.53+0.03)x=0.56x;
当x>200时,y=(0.53+0.1)x=0.63x;
图象如图表示:
(2)因为239>200,所以小明家8月份电费是每千瓦时(0.53+0.1)=0.63元,故电费是239×0.63=135.07元;
(3)设下月小明家的用电量是x千瓦时,可得:$\left\{\begin{array}{l}{(\frac{x}{30}+2)×30>240}\\{(\frac{x}{30}-2)×30≤180}\end{array}\right.$,
可得:150<x≤240.
所以下月(30天)每天用电量应控制在5<x≤8.

点评 此题考查一次函数的应用,关键是根据电费的分阶段缴费得出关系式解答即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.已知△ABC和△AED都是等腰直角三角形,∠AED=∠ACB=90°,连接BD、EC,点M、N分别为BD、EC的中点.
(1)当点E在AB上,且点C和点D重合时,如图(1),MN与EC的位置关系是MN⊥EC;
(2)当点E、D分别在AB、AC上,且点C与点D不重合时,如图(2).求证:MN⊥EC;
(3)在(2)的条件下,将Rt△AED绕点A逆时针旋转,使点D落在AB上,如图(3),则MN与EC的位置关系还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如果x+y=5,xy=6,则x2+y2=30,(x-y)2=1,x2y+xy2=13.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,DE∥BC,AD:DB=1:2,则△ADE和△ABC的相似比为(  )
A.1:2B.1:3C.2:1D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.甲从M地出发去N地,乙搭甲的便车也从M地出发到途中与M,N两地在同一条直线上的G地.甲在N地停留一段时间后以110km/h的速度返回,乙在G地停留了$\frac{3}{4}$h后,徒步返回M地,走了5km时与返回的甲相遇并搭甲车返回M地.如图是两人与M地的距离y(单位:km)与行进时间x(单位:h)之间的函数图象(甲、乙均匀速行进,不考虑其他因素).
(1)求图象中线段FD的解析式;
(2)甲在N地停留了几小时?
(3)乙返回M地时,若一直徒步会比遇到甲搭甲的便车多用多长时间?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=3,BE:EC=4:1,则线段DE的长为$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在平面直角坐标系中,△ABC是直角三角形,∠CBA=90°,点C与坐标原点O重合,点A在x轴的正半轴上,点B的坐标为(2,4),一条抛物线经过△ABC三个顶点A、B、C,直线AB与抛物线对称轴交于点Q.
(1)求经过A、B、C三点的抛物线的解析式;
(2)若在A、B两点之间的抛物线上有一个动点P,如图2,连接AP,BP,设点P的横坐标为m,请求出△ABP的面积S关于m的函数关系式;并求出当△ABP的面积最大时,点P的坐标;
(3)若△ABC沿射线BA方向平移,得到△DEF,如图3,若使△AFQ为等腰三角形,请直接写出F的点坐标(点O除外)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.正六边形的边心距是$\sqrt{3}$,则它的边长是(  )
A.1B.2C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某商店经销甲、乙两种商品,现有如下信息:

请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各是多少元?
(2)该商店平均每天卖出甲商品500件,乙商品200件.经调查发现,甲、乙两种商品零售单价分别每涨0.5元,这两种商品每天各少销售50件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都涨n元,在不考虑其它因素的条件下,当甲、乙两种商品的零售单价分别定为多少元时,才能使商店每天销售这两种商品获取的利润最大?每天的最大利润是多少元?

查看答案和解析>>

同步练习册答案