精英家教网 > 初中数学 > 题目详情
12.某商店经销甲、乙两种商品,现有如下信息:

请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各是多少元?
(2)该商店平均每天卖出甲商品500件,乙商品200件.经调查发现,甲、乙两种商品零售单价分别每涨0.5元,这两种商品每天各少销售50件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都涨n元,在不考虑其它因素的条件下,当甲、乙两种商品的零售单价分别定为多少元时,才能使商店每天销售这两种商品获取的利润最大?每天的最大利润是多少元?

分析 (1)根据图上信息可以得出甲乙商品之间价格之间的等量关系,即可得出方程组求出即可;
(2)把商店的销售利润表示成n的函数,根据函数的性质即可求解.

解答 解:(1)假设甲、乙两种商品的进货单价各为x,y元,则甲的零售价是(x+2)元,乙的零售价是(2y-3)元.
根据题意得:$\left\{\begin{array}{l}{x+y=10}\\{2(x+2)+3(2y-3)=31}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=6}\\{y=4}\end{array}\right.$,
∴甲、乙零售单价分别为6元和4元;
(2)甲、乙两种商品的零售单价都涨n元,则甲、乙商品的销售量分别是(500-100n)、(200-100n)件,甲的每件利润是(2+n)元,乙每件的利润是2y-3-y+n=y-3+n=1+n元.
则商店的每天的销售利润w=(500-100n)(2+n)+(200-100n)(1+n),即w=-200n2+400n+1200,
则当n=-$\frac{400}{2×(-200)}$=1时,w最大,最大值是:1400元.

点评 此题主要考查了一元二次方程的应用,此题比较典型也是近几年中考中热点题型,注意表示总利润时表示出商品的单件利润和所卖商品件数是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.节约1度电,可以减少0.785千克碳排放.某省从2011年6月1日起执行新的居民生活用电价格,一户一表居民用户将实施阶梯式累进电价:月用电量低于50千瓦时(含50千瓦时)部分不调整,电价每千瓦时0.53元;月用电量在51~200千瓦时部分,电价每千瓦时上调0.03元;月用电量超过200千瓦时部分,电价每千瓦时上调0.10元.小明家属一户一表居民用户,将实施阶梯式累进电价,7月份至8月份的电费缴款情况如下表:
计算日期上期示度本期示度电量金额(元)
201107103 2303 2966634.98
201108103 2963 535239135.07
(1)根据上述资料对阶梯式累进电价的描述,设电量为x千瓦时,金额为y元,表示出金额对于电量的函数关系,并画出图象.
(2)解释小明家8月份电费的计算详情.
(3)为节约用电,小明对以后制订了详细的用电计划,如果实际每天比计划多用2千瓦时,下月用电量将会超过240千瓦时;如果实际每天比计划节约2千瓦时,那么下月用电量将会不超过180千瓦时,下月(30天)每天用电量应控制在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.若抛物线y=ax2+bx+c上有两点A,B关于原点对称,则称它为“完美抛物线”.
(1)请猜猜看:抛物线y=x2+x-1是否是“完美抛物线”?若猜是,请写出A,B坐标,若不是,请说明理由;
(2)若抛物线y=ax2+bx+c是“完美抛物线”与y轴交于点C,与x轴交于(-$\frac{c}{2}$,0),若S△ABC=$\frac{{c}^{2}}{b}$,求直线AB解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.长为1,宽为a的矩形纸片($\frac{1}{2}$<a<1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作终止.
(I)第二次操作时,剪下的正方形的边长为1-a;
(Ⅱ)当n=3时,a的值为$\frac{3}{5}$或$\frac{3}{4}$.(用含a的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在锐角△ABC中,AC是最短边,以AC的中点O为圆心,$\frac{1}{2}$AC长为半径作⊙O,交BC于点E,过O作OD∥BC交⊙O于点D,连结AE、AD、DC.
(1)求证:D是$\widehat{AE}$的中点;
(2)求证:∠DAO=∠B+∠BAD;
(3)若$\frac{{S}_{△CEF}}{{S}_{△OCD}}$=$\frac{1}{2}$,且AC=6,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线y=-x+2上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(-1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为2$\sqrt{2}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案