精英家教网 > 初中数学 > 题目详情

如图,AB=AC,BE和CD相交于P,PB=PC,求证:PD=PE.

证明:连接BC,
∵PB=PC,
∴∠PBC=∠PCB,
又AB=AC,
∴∠ABC=∠ACB,
∴∠ABC-∠PBC=∠ACB-∠PCB,即∠DBP=∠ECP,
在△DPB和△EPC中,

∴△DPB≌△EPC,
∴PD=PE.
分析:首先连接BC,然后利用等腰三角形的性质可以证明∠PBD=∠PCE,最后证明△PBD≌△PCE,利用全等三角形的性质即可求解.
点评:此题主要考查了全等三角形的性质与判定,同时也利用了等腰三角形的性质,题目有一定的综合性,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎样的数量关系?证明你的结论;
(2)如果∠C=2∠D,那么你能得到什么结论?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)已知:如图,AB=AC,∠DAE=∠B.
求证:△ABE∽△DCA.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•来宾)如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是
(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于点D,求:
(1)∠ABD的度数;
(2)若△BCD的周长是m,求BC的长.

查看答案和解析>>

同步练习册答案