精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线经过点C交x轴于点E,双曲线经过点D,则k的值为   .
1

试题分析:由一次函数图象上点的坐标特征即可求得点C的坐标,根据矩形的性质易求点D的坐标,所以把点D的坐标代入双曲线解析式即可求得k的值:
∵BC=1,∴点C的纵坐标是y=1。
∵直线经过点C,∴,解得,x=4。∴点C的坐标是(4,1)。
∵矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,∴D(1,1)。
∵双曲线经过点D,∴k=xy=1×1=1,即k的值为1。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知双曲线上一点M(1,m)和双曲线上一点N(n,3).
(1)求m、n的值;
(2)求△OMN的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).

(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将边长为4的等边三角形AOB放置于平面直角坐标系xoy中,F是AB边上的动点(不与端点A、B重合),过点F的反比例函数(k>0,x>0)与OA边交于点E,过点F作FC⊥x轴于点C,连结EF、OF.

(1)若SOCF=,求反比例函数的解析式;
(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与y轴的位置关系,并说明理由;
(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数y=的图象经过点(2,﹣2),则该反比例函数的图象位于(  )
A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是
A.1B.2C.3 D.4

查看答案和解析>>

同步练习册答案