精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
(1) B(2,4),C(6,4),D(6,6);(2) A、C落在反比例函数的图象上,平移距离为3,反比例函数的解析式是.

试题分析:(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出答案;
(2)设矩形平移后A的坐标是(2,6-x),C的坐标是(6,4-x),得出k=2(6-x)=6(4-x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.
试题解析:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
∴AB=CD=2,AD=BC=4,
∴B(2,4),C(6,4),D(6,6);
(2)A、C落在反比例函数的图象上,
设矩形平移后A的坐标是(2,6-x),C的坐标是(6,4-x),
∵A、C落在反比例函数的图象上,
∴k=2(6-x)=6(4-x),
x=3,
即矩形平移后A的坐标是(2,3),
代入反比例函数的解析式得:k=2×3=6,
即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.

(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数的图象经过点,则的值为(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线经过点C交x轴于点E,双曲线经过点D,则k的值为   .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P是反比例函数图象上的点,PA垂直x轴于点A(-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=

(1)k的值是   
(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知A,B,C是反比例函数图象上的三个整点(即横、纵坐标均为整数的点),分别以这些点向横轴或纵轴作垂线段,由垂线段为边作出三个正方形,再以正方形的边长为直径作两个半圆,组成如图所示的阴影部分,则阴影部分的面积总和是        .(用含π的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若双曲线的图象经过第一、三象限,则k的取值范围是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图象经过OB边的中点C,则点B的坐标是

A.(1,)       B.(,1)      C.(2,)      D,(,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川南充3分)如图,函数的图象相交于点A(1,2)和点B,当时,自变量x的取值范围是【   】
A.x>1B.-1<x<0
C.-1<x<0或x>1D.x<-1或0<x<1

查看答案和解析>>

同步练习册答案