【题目】如图,矩形的两条边分别在轴和轴上,已知点、点.
(1)若把矩形沿直线折叠,使点落在点处,直线与的交点分别为,求折痕的长;
(2)在(1)的条件下,点在轴上,在平面内是否存在点,使以为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
(3)如图,若为边上的一动点,在上取一点,将矩形绕点顺时针旋转一周,在旋转的过程中,的对应点为,请直接写出的最大值和最小值.
【答案】(1)折痕的长为;(2)点坐标为或或或;(3)的最小值为,的最大值为5.
【解析】
(1)连接AD,根据矩形的性质可求出,继而得,设,则,在中,根据勾股定理求出DC长,继而在中利用勾股定理求出DF长,证明,由全等三角形的性质得EF=DF,进而可求得答案;
(2)分两咱情形分别讨论即可:DE为菱形的边;DE为菱形的对角线;
(3)由题意点M在如图3中的圆环内或两个圆上,利用图象法即可解决问题.
(1)连接AD,
四边形是矩形,,
,
由折叠可得:,设,则,
在中,,
即 ,
解得 ,即,
在中, 即,
解得,
四边形是矩形,,
,
,
折痕的长为;
(2)由(1)可知,,
①当为菱形的边时,,可得,
②当为菱形的对角线时,与重合,与重合,,
③当点在第三象限,与关于轴对称,,
综上所述,点坐标为或或或;
(3)如图中,作则,
观察图形可知,的最小值 ,
的最大值 .
科目:初中数学 来源: 题型:
【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)
(1)求该二次函数的解析式;
(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。甲,乙,丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人。”丙说:“九年级的体育达标率最高。”甲、乙、丙三个同学中,说法正确的是_____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,分别是的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为
(1)如图,当时,线段的长等于 ,线段的长等于 .(直接填写结果)
(2)如图,当时,求证:,且;
(3)设的中点为,则线段的长为 (直接填写结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC与△A'B'C在平面直角坐标系中的位置如图.
(1)分别写出B、B'的坐标:B______;B′______;
(2)若点P(a,b)是△ABC内部一点,则平移后△A'B'C内的对应点P′的坐标为______;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过试验得知:丙种树苗的成活率为89.6%,把试验数据绘制成下面两幅统计图.(部分信息未给出)
(1)试验所用的乙种树苗的数量是_______株;
(2)求出丙种树苗的成活数,并把图②补充完整;
(3)你认为应选哪种树苗进行推广?请通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为.
(1)①当点与点重合时,的值为______;②当点与点重合时,的值为______.
(2)请用含的式子表示,并直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知, 是一次函数的图象和反比例函数的图象的两个交点.
(1) 求一次函数、反比例函数的关系式;
(2) 求△AOB的面积.
(3) 当自变量x满足什么条件时,y1>y2 .(直接写出答案)
(4)将反比例函数的图象向右平移n(n>0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y3.(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com