精英家教网 > 初中数学 > 题目详情
(2012•达州)如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为
(-1,3)
(-1,3)
,点E的坐标为
(-3,2)
(-3,2)

(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.
(3)若正方形和抛物线均以每秒
5
个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.
②运动停止时,求抛物线的顶点坐标.
分析:(1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标;
(2)利用待定系数法求出抛物线的解析式;
(3)本问非常复杂,须小心思考与计算:
①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时
3
2
秒,期间可以划分成三个阶段:当0<t≤
1
2
时,对应图(3)a;当
1
2
<t≤1时,对应图(3)b;当1<t≤
3
2
时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考;
②当运动停止时,点E到达y轴,点E(-3,2)运动到点E′(0,
7
2
),可知整条抛物线向右平移了3个单位,向上平移了
3
2
个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标.
解答:解:(1)由题意可知:OB=2,OC=1.
如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G.
易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(-1,3);
同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(-3,2).
∴D(-1,3)、E(-3,2).

(2)抛物线经过(0,2)、(-1,3)、(-3,2),
c=2
a-b+c=3
9a-3b+c=2
?
解得  
a=-
1
2
b=-
3
2
c=2

y=-
1
2
x2-
3
2
x+2


(3)①当点D运动到y轴上时,t=
1
2

当0<t≤
1
2
时,如图(3)a所示.
设D′C′交y轴于点F
∵tan∠BCO=
OB
OC
=2,又∵∠BCO=∠FCC′
∴tan∠FCC′=2,即
FC′
CC′
=2
∵CC′=
5
t,∴FC′=2
5
t.?
∴S△CC′F?=
1
2
CC′•FC′=
1
2
5
2
5
t=5t2
当点B运动到点C时,t=1.
1
2
<t≤1时,如图(3)b所示.
设D′E′交y轴于点G,过G作GH⊥B′C′于H.
在Rt△BOC中,BC=
22+12
=
5

∴GH=
5
,∴CH=
1
2
GH=
5
2

∵CC′=
5
t,∴HC′=
5
t-
5
2
,∴GD′=
5
t-
5
2

∴S梯形CC′D′G?=
1
2
5
t-
5
2
+
5
t) 
5
=5t-
5
4

当点E运动到y轴上时,t=
3
2

当1<t≤
3
2
时,如图(3)c所示
设D′E′、E′B′分别交y轴于点M、N
∵CC′=
5
t,B′C′=
5

∴CB′=
5
t-
5
,?∴B′N=2CB′=2
5
t-2
5

∵B′E′=
5
,∴E′N=B′E′-B′N=3
5
-2
5
t
∴E′M=
1
2
E′N=
1
2
3
5
-2
5
t)
∴S△MNE′?=
1
2
3
5
-2
5
t)•
1
2
3
5
-2
5
t)=5t2-15t+
45
4

∴S五边形B′C′D′MN?=S正方形B′C′D′E′?-S△MNE′?=(
5
)2-
(5t2-15t+
45
4
)=-5t2+15t-
25
4

综上所述,S与x的函数关系式为:
当0<t≤
1
2
时,S=5t2
1
2
<t≤1时,S=5t-
5
4

当1<t≤
3
2
时,S=-5t2+15t-
25
4

②当点E运动到点E′时,运动停止.如图(3)d所示
∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′
∴△BOC∽△E′B′C
OB
B′E′
=
BC
E′C

∵OB=2,B′E′=BC=
5

2
5
=
5
E′C

∴CE′=
5
2

∴OE′=OC+CE′=1+
5
2
=
7
2

∴E′(0,
7
2

由点E(-3,2)运动到点E′(0,
7
2
),可知整条抛物线向右平移了3个单位,向上平移了
3
2
个单位.
y=-
1
2
x2-
3
2
x+2
=y=-
1
2
(x+
3
2
)2+
25
8
?
∴原抛物线顶点坐标为(-
3
2
25
8

∴运动停止时,抛物线的顶点坐标为(
3
2
37
8
).
点评:本题是非常典型的动线型综合题,全面考查了初中数学代数几何的多个重要知识点,包括:二次函数的图象与性质、待定系数法求解析式、抛物线与几何变换(平移)、相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质等.难点在于第(3)问,识别正方形和抛物线平移过程的不同阶段是关键所在.作为中考压轴题,本题涉及考点众多,计算复杂,因而难度很大,对考生综合能力要求很高,具有很好的区分度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•达州)如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为
1
9
1
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.
(1)求证:PC是⊙O的切线.
(2)若AF=1,OA=2
2
,求PC的长.

查看答案和解析>>

同步练习册答案