精英家教网 > 初中数学 > 题目详情
24、小明打算用如图的矩形纸片ABCD折出一个等边三角形.他的操作步骤是:
①先把矩形纸片对折后展开,并设折痕为AM;
②把B点叠在折痕线上,得到Rt△AB1E;
③沿着EB1线折叠,得到△EAF.小明认为,所得的△EAF即为等边三角形.
试问,小明的结论是否正确?若正确,请给予证明;若不正确,请你给出一种将矩形纸片ABCD折为一个等边三角形的方法.
分析:首先根据平行线等分线段定理得到B1E=B1F,再结合AB1⊥EF得到AE=AF.只需再进一步得到有一个角是60度即可.根据折叠知∠BAE=∠B1AE,根据等腰三角形的三线合一得到∠B1AE=∠B1AF,从而得到∠EAF=60°,根据有一个角是60°的等腰三角形是等边三角形即可证明.
解答:解:该三角形是等边三角形.理由如下:
∵AD∥MN∥BC,AM=BM,
∴B1E=B1F,
又∠AB1E=∠B=90°,
∴AE=AF,
∴∠B1AE=∠B1AF.
根据折叠得∠BAE=∠B1AE,
∴∠BAE=∠B1AE=∠B1AF=30°,
∴∠EAF=60°,
∴△EAF即为等边三角形.
点评:综合考查等边三角形的判定方法,平行线等分线段定理、线段垂直平分线的性质、等腰三角形的性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

知识背景:杭州留下有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)

(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:城西一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小明打算用如图的矩形纸片ABCD折出一个等边三角形.他的操作步骤是:
①先把矩形纸片对折后展开,并设折痕为MN;
②把B点叠在折痕线上,得到Rt△AB1E;
③将Rt△A B1E沿着AB1线折叠,得到△EAF.小明认为,所得的△EAF即为等边三角形.
试问,小明的结论是否正确?若正确,请给予证明;若不正确,请你给出一种将矩形纸片ABCD折为一个等边三角形的方法.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《图形的对称》(02)(解析版) 题型:解答题

(2003•资阳)小明打算用如图的矩形纸片ABCD折出一个等边三角形.他的操作步骤是:
①先把矩形纸片对折后展开,并设折痕为MN;
②把B点叠在折痕线上,得到Rt△AB1E;
③将Rt△A B1E沿着AB1线折叠,得到△EAF.小明认为,所得的△EAF即为等边三角形.
试问,小明的结论是否正确?若正确,请给予证明;若不正确,请你给出一种将矩形纸片ABCD折为一个等边三角形的方法.

查看答案和解析>>

科目:初中数学 来源:2003年四川省资阳市中考数学试卷(解析版) 题型:解答题

(2003•资阳)小明打算用如图的矩形纸片ABCD折出一个等边三角形.他的操作步骤是:
①先把矩形纸片对折后展开,并设折痕为MN;
②把B点叠在折痕线上,得到Rt△AB1E;
③将Rt△A B1E沿着AB1线折叠,得到△EAF.小明认为,所得的△EAF即为等边三角形.
试问,小明的结论是否正确?若正确,请给予证明;若不正确,请你给出一种将矩形纸片ABCD折为一个等边三角形的方法.

查看答案和解析>>

同步练习册答案