精英家教网 > 初中数学 > 题目详情

【题目】设a、b、c是直角三角形的三边,c为斜边,n为正整数,试判断an+bn与cn的关系,并证明你的结论.

【答案】解:当n=1,则a+b>c;
当n=2,则a2+b2=c2
当n≥3,则an+bn<cn
证明如下:
∵sinA=,cosA=
而0<sinA<1,0<cosA<1,
∴n≥3,sinnA<sin2A,connA<con2A,
∴sinnA+connA<sin2A+con2A=1,
+<1,
∴an+bn<cn
【解析】分类讨论:当n=1,根据三角形三边的关系有a+b>c;当n=2,根据勾股定理有n2+b2=c2;当n≥3,根据三角函数的定义得到
sinA= , cosA= , 且0<sinA<1,0<cosA<1,于是有sinnA<sin2A,connA<con2A,得到sinnA+connA<sin2A+con2A=1,
+<1,即可得到它们的关系.
【考点精析】本题主要考查了锐角三角函数的增减性的相关知识点,需要掌握当角度在0°~90°之间变化时:(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面一段文字:

问题:能化为分数形式吗?

探求:步骤①设,步骤②

步骤③,则

步骤④,解得:.

根据你对这段文字的理解,回答下列问题:

(1)步骤①到步骤②的依据是什么;

(2)仿照上述探求过程,请你尝试把化为分数形式:

(3)请你将化为分数形式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).

(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)

(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程: (1)x﹣3=-2x+1 (2)18(x-1)=-2(2x﹣1)(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5x<14,单位:m):

行驶次数

第一次

第二次

第三次

第四次

行驶情况

x

x

x﹣3

2(5﹣x)

行驶方向(填西”)

   

   

   

   

(1)请将表格补充完整;

(2)求经过连续4次行驶后,这辆出租车所在的位置;

(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某个正方体的表面展开图,各个面上分别标有1﹣6的不同数字,若将其折叠成正方体,则相交于同一个顶点的三个面上的数字之和最大的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将5张都是10元的纸币随机装入10个完全相同的信封中,设计以下几种抽奖游戏:

(1)游戏A:设计一个游戏,使任意抽取一个信封时,能抽到纸币的概率为

(2)游戏B:设计一个游戏,使任意抽取一个信封时,能抽到纸币的概率为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:(3﹣π)0﹣( 1+tan45°;
(2)解不等式:3(x﹣1)>2x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案