精英家教网 > 初中数学 > 题目详情

若a=数学公式,b=数学公式-2,那么a和b的关系是


  1. A.
    a=b
  2. B.
    a+b=0
  3. C.
    ab=1
  4. D.
    ab=-1
B
分析:把进行化简,再与b=-2两者的进行比较即可.
解答:a=
=
=
=2-
∴a+b=2-=0,
∴B正确,故选B.
点评:本题主要是利用根式的分母有理化计算最简结果,再比较两者的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、小明学了勾股定理后很高兴,兴冲冲的回家告诉了爸爸:在△ABC中,若∠C=90°,BC=a,AC=b,AB=c,如下图,根据勾股定理,则a2+b2=c2.爸爸笑眯眯地听完后说:很好,你又掌握了一样知识,现在考考你,若不是直角三角形,那勾股定理还成不成立?若成立,请说明理由;若不成立,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.〔下图备用)

查看答案和解析>>

科目:初中数学 来源: 题型:

对于一元二次方程ax2+bx+c=0(a≠0).下列说法:
①若△=b2-4ac>0,那cx2+bx+a=0么一定有两个不相等的实数根;
②若a+b+c=0,那么ax2+bx+c=0一定有一个根是1;
③若x0是ax2+bx+c=0的一个根,那么△=(2ax0+b)2
④若b2>5ac,那么ax2+bx+c=0一定有两个不相等的实数根.
其中正确的说法的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小明只带2元和5元面值的人民币若干张,他要买一件29元的商品,若商店没有零钱找,那他付款时这两种面值的人民币共有
3
3
种不同的组合方式.

查看答案和解析>>

科目:初中数学 来源: 题型:

小华看着电视里的舞蹈节目:七个身穿不同民族服装的舞蹈演员正在面对观众进行队列变换,他陷入了沉思:这7个演员面对观众一共会有几种队列变换呢?…为了解决这一问题,他是这样思考和探索的:
①若只有一个演员A,那就只有队列变换A,共1种;
②若有二个演员A、B,那就有队列变换:AB和BA,共2种;
③若有三个演员A、B、C,那就有队列变换:ABC、ACB、BAC、BCA、CAB、CBA,共6种;
④若有四个演员A、B、C、D,那就有队列变换(小华把这四个字母在纸上不停的变换顺序地排列着、写着)…数数看,哇!有24种,变化如此之快呀,五个、六个、七个演员呢?看来不可再强攻,否则就…,还是智取吧…
通过查阅资料,小华发现了如下的材料:
材料:从m个人中选出n人排成一列的所有排列方法总数(下均简称排列数)记为A
 
n
m
=m×(m-1)×(m-2)×…×(m-n+1),特别地当m=n时即从m个人中选出m个人进行全排列为A
 
m
m
=m×(m-1)×(m-2)×…×2×1
再应用表格吧,记得书上有这样的例子,老师也曾示范过,它能更加清楚地反映其中的数字规律呢?
演员的个数 1 2 3 4
可能有的变换数 1 2 6 24
(1)求A
 
2
5
和A
 
3
3
的值?
(2)计算这7个舞蹈演员面对观众一共会有几种队列变换?
(3)6个人排成一列,其中甲排最前面,同时乙排最后面的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

一条直线流水线上依次有5个机器人,它们站的位置在数轴上依次用点A1,A2,A3,A4,A5表示,如图:
①怎样将点A3移动,使它先到达A2点,再到达A5点,请用文字语言说明.
②若原点是零件供应点,那5个机器人分别到达供应点取货的总路程是多少?
③将零件的供应点设在何处,才能使5个机器人分别到达供应点取货的总路程最短?

查看答案和解析>>

同步练习册答案