【题目】如图,已知A,B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个单位长度的速度向原点O运动,同时直线EF由x轴为起始位置以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E,F,连接EP,FP,设动点P与直线EF同时出发,运动时间为t秒.
(1)求t=15秒时,求EF的长度;
(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时的值;若不存在,请说明理由.
【答案】(1)EF=20;(2)不存在使得的面积等于(平方单位)的值.
【解析】
(1)当t=15时,OE=15,易证△BEF∽△BOA,则,从而求出EF的长度;
(2)假设存在这样的t,使得△PEF的面积等于160,则根据面积公式列出方程,由根的判别式进行判断,得出结论.
(1)∵EF∥OA,∴∠BEF=∠BOA.
又∵∠B=∠B,∴△BEF∽△BOA,∴,当t=15时,OE=BE=15,OA=40,OB=30,∴;
(2)∵△BEF∽△BOA,∴,∴,整理,得t2﹣30t+240=0.
∵△=302﹣4×1×240=﹣60<0,∴方程没有实数根,∴不存在使得△PEF的面积等于160(平方单位)的t值.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点的坐标分别为A(3,3)、B(-1,0)、C(4,0).
(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C的对应点C1坐标;(不必画出平移后的三角形)
(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;
(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△A2B2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75, ≈1.732,结果精确到0.1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=6,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.
(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由;
(2)在(1)的条件下,当∠A等于多少度时,四边形BECD是正方形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0)。未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元。通过市场调研发现,该时装单价每降1元,每天销量增加4件。在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为_____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴正半轴、y轴的负半轴上,二次函数y=(xh)2+k的图象经过B、C两点.
(1)求该二次函数的顶点坐标;
(2)结合函数的图象探索:当y>0时x的取值范围;
(3)设m<,且A(m,y1),B(m+1,y2)两点都在该函数图象上,试比较y1、y2的大小,并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们,在我们进入高中以后,将还会学到下面三角函数公式:
sin (α-β)=sinαcosβ-cosαsinβ,
cos (α-β)=cosαcosβ+sinαsinβ
例:sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30°=
(1)试仿照例题,求出cos 15°的准确值;
(2)我们知道,tanα=,试求出tan 15°的准确值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com