精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为


  1. A.
    m2
  2. B.
    m2+1
  3. C.
    2m2
  4. D.
    (m+1)2
A
分析:过A作AD⊥BC,垂足为D,利用勾股定理表示出AB、AP的长,再根据D是BC的中点,整理得到AB2-AP2=PB•PC,把AB=m代入求解即可.
解答:解:作AD⊥BC交BC于D,
AB2=BD2+AD2
AP2=PD2+AD2
①-②得:
AB2-AP2=BD2-PD2
∴AB2-AP2=(BD+PD)(BD-PD),
∵AB=AC,∴D是BC中点,
∴BD+PD=PC,BD-PD=PB,
∴AB2-AP2=PB•PC.
∴PA2+PB•PC=AB2=m2
故选A.
点评:此题主要考查了等腰三角形的性质和勾股定理,使①-②得:AB2-AP2=BD2-PD2,是此题关键的一步.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案