精英家教网 > 初中数学 > 题目详情
8.已知正方形ABCD,P为直线CD上的一点,以PC为边作正方形PCNM,使点N在直线BC上,连接MB、MD.
(1)如图1,若点P在线段DC的延长线上,求证:MB=MD;
(2)如图2,若点P在线段DC上,当P为DC的中点时,判断△PMD的形状,并说明理由;
(3)如图3,若点P在线段DC上,连接BD,当MP平分∠DMB时,求∠DMB的度数.

分析 (1)根据正方形的性质证明△BNM≌△DPM,可得MB=MD;
(2)根据小正方形的性质得:∠DPM=∠CPM=90°,由中点结合得:PD=PM,所以△PMD是等腰直角三角形;
(3)如图3,作辅助线,构建等腰直角三角形EFD,设CD=a,PC=b,则PD=a-b,由PM∥BC,得△PME∽△CBE,所以$\frac{PM}{BC}=\frac{PE}{CE}$,代入可计算得:a=$\sqrt{2}$b,根据正方形对角线平分直角得:∠CDB=45°,得△DEF是等腰直角三角形,求EF和CE的长,得EF=EC,根据角平分线的逆定理得:BE平分∠DBC,最后由平行线和已知的角平分线可得结论.

解答 证明:(1)如图1,∵四边形ABCD和四边形CPMN是正方形,
∴BC=DC,CN=CP,∠P=∠N=90°,
∴BC+CN=DC+PC,即BN=DP,
∴△BNM≌△DPM,
∴MB=MD;

(2)△PMD是等腰直角三角形;
理由如下:如图2,
∵P是CD的中点,
∴PD=PC,
∵四边形CPMN是正方形,
∴PM=PC,∠DPM=∠CPM=90°,
∴PD=PM,
∴△PMD是等腰直角三角形;

(3)如图3,设PC与BM相交于点E,过点E作EF⊥BD,垂足为F,
设CD=a,PC=b,则PD=a-b,
∵MP平分∠DME,MP⊥DE,
∴PE=PD=a-b,CE=a-(2a-2b)=2b-a,
∵PM∥BC,
∴△PME∽△CBE,
∴$\frac{PM}{BC}=\frac{PE}{CE}$,即$\frac{b}{a}=\frac{a-b}{2b-a}$,
∴a=$\sqrt{2}$b,
∵∠CDB=45°,
∴EF=DE•sin45°=$\frac{\sqrt{2}}{2}$•2(a-b)=$\sqrt{2}$($\sqrt{2}$b-b)=2b-$\sqrt{2}$b,
∵CE=2b-a=2b-$\sqrt{2}$b,
∴EF=EC,EF⊥BD,EC⊥BC,
∴BE平分∠DBC,
∴∠EBF=∠EBC=$\frac{1}{2}$∠DBC=22.5°,
∵PM∥BC,
∴∠PME=∠EBC=22.5°,
∴∠DMB=45°.

点评 本题是四边形的综合题,考查了正方形的性质、特殊的三角函数值、三角形相似的性质和判定、角平分线的逆定理、等腰直角三角形的性质和判定,前两问难度不大,第三问有难度,作辅助线,设CD=a,PC=b,表示EF和CE的长是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.下列计算结果为a6的是(  )
A.a•a5B.a8-a2C.(a33D.4a8÷3a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)如图1,已知AD=BC,AC=BD.求证:△ADB≌△BCA.
(2)如图2,已知AB是⊙O的一条直径,延长AB至点C,使AC=3BC,CD与⊙O相切于点D,若CD=$\sqrt{3}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.人的头发直径约为0.0000695m,用科学记数法可记为(  )
A.695×10-5mB.69.5×10-4mC.6.95×10-5mD.6.95×10-6m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ABC中,以直角边AC为直径作⊙O与斜边AB交于点D,点E在BC边上,BE=CE.
(1)求证:DE是⊙O的切线;
(2)延长ED与CA的延长线交于点F,若tan∠F=$\frac{3}{4}$,求sin∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与CD相切于点M,
(1)求证:BC与⊙O相切;
(2)若正方形的边长为1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为(  )
A.2+$\sqrt{3}$B.2$\sqrt{3}$C.3+$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知关于x的一元二次方程ax2-2x-1=0有两个不相等的实数根,则a的取值范围是a>-1且a≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知在正比例函数y=-2x的图象上,有三点(-3,y1)、(-1,y2)、(2,y3),则y1,y2,y3的大小关系为(  )
A.y2>y1>y3B.y1>y3>y2C.y1>y2>y3D.无法确定

查看答案和解析>>

同步练习册答案