精英家教网 > 初中数学 > 题目详情

如图,抛物线经过A(-1,0),B(5,0),C(0,?)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

(1)抛物线的解析式为:
(2)P(2,-);
(3)存在,符合条件的点N的坐标为(4,-),(2+)或(2-).

解析试题分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(-1,0),B(5,0),C(0,?)三点代入求出a、b、c的值即可;
(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;
(3)分点N在x轴下方或上方两种情况进行讨论.
(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(-1,0),B(5,0),C(0,?)三点在抛物线上,

解得 .
∴抛物线的解析式为:
(2)∵抛物线的解析式为:
∴其对称轴为直线
连接BC,如图1所示,

∵B(5,0),C(0,-),
∴设直线BC的解析式为y=kx+b(k≠0),
 ,
解得 ,
∴直线BC的解析式为
当x=2时,y=1-=-
∴P(2,-);
(3)存在.
如图2所示,

①当点N在x轴下方时,;
∵抛物线的对称轴为直线x=2,C(0,-),∴N1(4,-
②当点N在x轴上方时,
如图,过点N2作N2D⊥x轴于点D,
在△AN2D与△M2CO中,
 ,
∴△AN2D≌△M2CO(ASA),
∴N2D=OC=,即N2点的纵坐标为

解得x=2+或x=2-
∴N2(2+),N3(2-).
综上所述,符合条件的点N的坐标为(4,-),(2+)或(2-).
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式.
(2)求函数图象的顶点坐标及D点的坐标.
(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.
(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在SADP=SBCD?若存在,请求出P点的坐标;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
(1)当点N落在AB边上时,t的值为   ,当点N落在AC边上时,t的值为   
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒 个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数(m是常数)
(1)求证:不论m为何值,该函数的图像与x轴没有公共点;
(2)把该函数的图像沿x轴向下平移多少个单位长度后,得到的函数的图像与x轴只有一个公共点?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线的图象过点C(0,1),顶点为Q(2,3)点D在x轴正半轴上,且线段OD=OC
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:二次函数中的满足下表:


……

0
1
2
3
……

……
0




……
(1)求的值;
(2)根据上表求时的的取值范围;
(3)若两点都在该函数图象上,且,试比较的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

学习了函数的知识后,数学活动小组到文具店调研一种进价为每支2元的活动笔的销售情况。调查后发现,每支定价3元,每天能卖出100支,而且每支定价每下降0.1元,其销售量将增加10支。但是物价局规定,该活动笔每支的销售利润不能超过其进价的40%。设每支定价x元,每天的销售利润为y元。
(1)求每天的销售利润为y与每支定价x之间的函数关系式;
(2)如果要实现每天75元的销售利润,那么每支定价应为多少元?
(3)当每支定价为多少元时,可以使这种笔每天的销售利润最大?

查看答案和解析>>

同步练习册答案