精英家教网 > 初中数学 > 题目详情

如图,在Rt△OAB中,∠B=Rt∠,OB=2AB.线段AB的垂直平分线交反比例函数y=数学公式(x>0)的图象于点C,D为垂足,过C作CE⊥OB于点E.当四边形CDBE为正方形时,正方形CDBE的面积为________.


分析:延长EC、DC,分别交x轴与P、F点,作CH⊥x轴于H点,设正方形CDBE的边长为a,根据垂直平分线的性质得AB=2a,则OB=2AB=4a,且可得到DF为△OAB的中位线,所以FD=OB=2a,则FC=2a-a=a,于是CP为△FDA的中位线,CP=AD=a,在Rt△CFP中,根据勾股定理计算出PF=a,利用面积法计算出CH=a,在Rt△CFH中,根据勾股定理计算HF=a,OA=2a,所以OF=OA=a,则可确定C点坐标为(a,a),然后把C点坐标代入反比例解析式得到a2
解答:延长EC、DC,分别交x轴与P、F点,作CH⊥x轴于H点,如图,
设正方形CDBE的边长为a,
∵FD垂直平分AB,
∴AB=2a,
∵OB=2AB,
∴OB=4a,
∵DF为△OAB的中位线,
∴FD=OB=2a,
∴FC=2a-a=a,
∴CP为△FDA的中位线,
∴CP=AD=a,
在Rt△CFP中,PF==a,
CH•PF=CP•CF,即CH•a=a•a,
∴CH=a,
在Rt△CFH中,HF==a,
在Rt△OAB中,OA==2a,
∴OF=OA=a,
∴OH=OF+FH=a,
∴C点坐标为(a,a),
把C(a,a)代入y=a•a=2,解得a2=
∴正方形CDBE的面积为
点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和正方形的性质;熟练运用勾股定理进行几何计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△OAB中,∠OBA=90°,且点B的坐标为(0,4).
(1)写出点A的坐标;
(2)画出△OAB绕点O顺时针旋转90°后的△O1A1B1
(3)求出sin∠A1OB1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2),将△OAB绕点O逆时针旋转90°后得△精英家教网OA1B1
(1)在图中作出△OA1B1并直接写出A1,B1的坐标;
(2)求点B旋转到点B1所经过的路线长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,3).
(1)在图中画出△OAB绕点O逆时针旋转90°后的△OA1B1
(2)求点B旋转到点B1所经过的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△OAB中,∠OBA=90°,OB=AB=4,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1
(1)线段OB1的长是
4
4
,∠A1OB的度数是
135°
135°

(2)连接BB1,求证:四边形OBB1A1是平行四边形;
(3)求四边形OBB1A1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•株洲)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1
(1)线段OA1的长是
6
6
,∠AOB1的度数是
135
135
度;
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)四边形OAA1B1的面积.

查看答案和解析>>

同步练习册答案