精英家教网 > 初中数学 > 题目详情

依次连接四边形ABCD各边的中点所得的四边形是矩形,则原四边形________.

对角线互相垂直
分析:作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD,EF∥AC,再根据矩形的每一个角都是直角可得∠1=90°,然后根据平行线的性质求出∠3=90°,再根据垂直定义解答.
解答:解:如图,连接AC、BD,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EH∥BD,EF∥AC,
∴∠1=∠2,∠2=∠3,
∴∠1=∠3,
∵四边形EFGH是矩形,
∴∠1=90°,
∴∠3=90°,
∴AC⊥BD,
即原四边形ABCD的对角线互相垂直.
故答案为:对角线互相垂直.
点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行线的性质,矩形的每一个角都是直角的性质以及垂线的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,如果DEFG能构成四边形.
(1)当O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)当O点移到△ABC外时,(1)的结论是否成立?画出图形并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),△ABC是正三角形,曲线DA1B1C1…叫做“正三角形ABC的渐开线”,其中
A1C
A1B1
B1C1
,…依次连接,它们的圆心依次按A,B,C循环.则曲线CA1B1C1叫做正△ABC的1重渐开线,曲线CA1B1C1A2B2C2叫做正△ABC的2重渐开线,…,曲线CA1B1C1A2…AnBnCn叫做正△ABC的n重渐开线.如图(2),四边形ABCD是正方形,曲线CA1B1C1D1…叫做“正方形ABCD的渐开线”,其中
A1D
A1B1
B1C1
C1D1
…依次连接,它们的圆心依次按A,B,C,D循环.则曲线DA1B1C1D1叫做正方形ABCD的1重渐开线,…,曲线DA1B1C1D1A2…AnBnCnDn叫做正方形ABCD的n重渐开线.依次下去,可得正n形的n重渐开线(n≥3).
若AB=1,则正方形的2重渐开线的长为18π;若正n边形的边长为1,则该正n边形的n重渐开线的长为
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.
(1)四边形DEFG是什么四边形,请说明理由;
(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEFG能构成四边形.
(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)当点O在△ABC外时,(1)的结论是否成立?(画出图形,指出结论,不需说明理由;)
(3)若四边形DEFG是菱形,则点O的位置应满足什么条件?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度,建立如图坐标系.
(1)请你作出△ABC关于点A成中心对称的△AB1C1(其中B的对称点是B1,C的对称点是C1),并写出点B1、C 1的坐标.
(2)依次连接BC1、B1C猜想四边形BC1B1C是什么特殊四边形?并说明理由.

查看答案和解析>>

同步练习册答案