精英家教网 > 初中数学 > 题目详情
已知,二次函数y=ax2+bx的图象经过点A(-5,0)和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.
(1)求点B的坐标;
(2)求二次函数的解析式;
(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.
(1)过点B作BD⊥x轴,垂足为点D,如图,
在Rt△ADB中,∠ADB=90°,cot∠BAO=
AD
BD
=2

设BD=x,AD=2x,
∵OA=0B=5,
∴OD=2x-5,
在Rt△ODB中,∵OD2+BD2=OB2
∴(2x-5)2+x2=52
解得x1=4,x2=0(不合题意,舍去),
∴BD=4,OD=3,
∴点B的坐标是(3,4),
(2)根据题意得
25a-5b=0
9a+3b=4

解这个方程组,得
a=
1
6
b=
5
6

∴二次函数的解析式是y=
1
6
x2+
5
6
x

(3)∵直线BC平行于x轴,
∴C点的纵坐标为4,
设C点的坐标为(m,4).
由题意得
1
6
m2+
5
6
m=4
,解得m1=3(不合题意,舍去),m2=-8,
∴C点的坐标为(-8,4),BC=11,AB=4
5
.…(1分)
∵∠ABC=∠BAP,
①如果△ABC△BAP,那么
AB
BC
=
AB
AP

∴AP=11,点P的坐标为(6,0),
②如果△ABC△PAB,那么
AB
BC
=
AP
AB

∴AP=
80
11
,点P的坐标为(
25
11
,0),
综上所述,点P的坐标为(6,0)或(
25
11
,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3).
(1)试求出抛物线的解析式;
(2)问:在抛物线的对称轴上是否存在一个点Q,使得△QAC的周长最小,试求出△QAC的周长的最小值,并求出点Q的坐标;
(3)现有一个动点P从抛物线的顶点T出发,在对称轴上以1个单位长度每秒的速度向y轴的正方向运动,试问,经过几秒后,△PAC是等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-k+m与x轴交于A(1,0),B(x2,0),与y轴负半轴交于点C,AB•OC=6,求抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场以每个40元的进价购进一批篮球,如果以每个50元销售,那么每月可售出200个.根据销售经验,售价每提高1元,销售量相应减少10个.
(1)假设销售单价提高x元,那么销售1个篮球所获得的利润是______元;这种篮球每月的销售量是______个;(用含x的代数式表示)
(2)篮球的售价定为多少元时,每月销售这种篮球的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-2mx+m2-4的图象与x轴交于A、B两点(点A在点B的左边),且与y轴交于点D.
(1)当点D在y轴正半轴时,是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由;
(2)当m=-1时,将函数y=x2-2mx+m2-4的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象Ω.当直线y=
1
2
x+b
与图象Ω有两个公共点时,求实数b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PFDE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面之间坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)点C的坐标为______;
(2)若抛物线y=ax2+bx经过C,A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,求出此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=
4
3
,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种植基地对去年瓜果生产基地的甲、乙两种瓜果的生产销售进行了统计,发现去年1至12月每千克甲种瓜果的销售价格y1(元)与月份x(1≤x≤12,x为整数)之间存在如图所示变化趋势,每千克乙种瓜果销售价格y2(元)与月份x(1≤x≤12,x为整数)之间的函数关系如下表:
月份x1234
销售价格y2(元)7.757.57.257
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y2与x之间的函数关系式,根据如图所示的变化趋势,求出y1与x之间满足的一次函数关系式;
(2)若去年每千克甲种瓜果生产成本为2.5元,每千克乙种瓜果生产成本为2元,且去年1至12月甲种瓜果销售量p1(万千克)与月份x满足关系式p1=0.2x+1(1≤x≤12,x为整数),去年1至12月乙种瓜果销售量p2(万千克)与月份x满足关系式p2=0.4x+0.8(1≤x≤12,x为整数),求去年上半年哪一个月同时出售甲、乙两种瓜果的总利润最大?并求出其最大利润;
(3)预计今年1至5月,受物价上涨因素的影响,该基地甲种瓜果生产成本每千克比去年增加20%,乙种瓜果的生产成本每千克比去年增加1元,而甲种瓜果每千克售价在去年12月份的基础上提高m%,乙种瓜果每千克售价在去年12月份的基础上提高1.2m%,与此同时,每月甲种瓜果的销售量均在去年12月份的基础上减少3m%,每月乙种瓜果的销售量均在去年12月份的基础上减少了2m%,这样,预计今年1至5月销售乙种瓜果获得的总利润比1至5月销售甲种瓜果获得的总利润多40万元,请参考以下数据,估算m的整数值(m≤10).
(参考数据:322=1024,332=1089,342=1156,352=1225)

查看答案和解析>>

同步练习册答案