【题目】如图,在Rt△ABC中,∠A=90,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
【答案】(1)(2)(3)存在
【解析】
试题分析:(1)根据△RQC∽△ABC,根据相似三角形的对应边成比例可求解DH;
(2)根据三角形的相似比求出y关于x的函数关系式;
(3)画出图形,根据图形进行讨论:
① 当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.由于∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C.
∴cos∠1=cosC==,∴,即可求出x的值;
② 当PQ=RQ时,-x+6=,x=6;
③当PR=QR时,则R为PQ中垂线上的点,于是点R为EC的中点,故CR=CE=AC=2.
试题解析:(1),AB=6,AC=8,.
点D为AB中点,.
,.
,,
∴,
(2),,
,,
即关于的函数关系式为:.
(3)存在,分三种情况:
①如图(1),当时,过点P作于M,则.
,,.
,,
,
.
②如图(2),当时,
,
.
③如图(3),当时,则R为PQ中垂线上的点,于是点R为EC的中点,
.
,
,
.
综上所述,当为或6或时,为等腰三角形.
科目:初中数学 来源: 题型:
【题目】某商场进了一批台灯,进价为30元,每个以40元卖出时,平均每月能销售600个。调查表明,在一定的售价范围内,售价x和销售量y满足如图的函数关系。
(1)求出销售量y和售价x的函数关系式,并写出自变量的范围;
(2)若平均每月想获得利10000元,则售价应定为多少元?
(3)设每个月的销售利润为w,则将灯的售价定为多少元时,每个月可以获得最大的销售利润?是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必然事件是 , 不可能事件是 . (将事件的序号填上即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(5分)(2015春鞍山期末)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:
项目 | 月功能费 | 基本话费 | 长途话费 | 短信费 |
金额/元 | 5 | 50 |
(1)请将表格补充完整;
(2)请将条形统计图补充完整;
(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;
(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com