【题目】如图,在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:四边形AFCE是平行四边形.
【答案】证明:连接AF、CE.
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,AE∥CF,
∵BE=DF,
∴DE=BF,
在Rt△ADE后Rt△CBF中,
,
∴Rt△ADE≌Rt△CBF,
∴AE=CF,∵AE∥CF,
∴四边形AECF是平行四边形
【解析】要证四边形AECF是平行四边形,连接AF、CE.由已知AE⊥BD,CF⊥BD,可证得AE∥CF,再证明AE=CF,通过证Rt△ADE≌Rt△CBF即可。
【考点精析】解答此题的关键在于理解平行四边形的判定的相关知识,掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,给出了下列三个论断:①对角线AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出______个正确的命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是( ) ①△ABC与△DEF是位似图形; ②△ABC与△DEF是相似图形;
③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,3),B(﹣2,﹣2),C(2,﹣1).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)写出点A1,B1,C1的坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程或方程组解应用题:
根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路.铺设600m后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.
投资量x(万元) | 2 |
种植树木利润y1(万元) | 4 |
种植花卉利润y2(万元) | 2 |
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:
①∠ABC=∠ADC;
②AC与BD相互平分;
③AC,BD分别平分四边形ABCD的两组对角;
④四边形ABCD的面积S=ACBD.
正确的是 (填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将三角形ABC沿射线BA方向平移到三角形A'B'C'的位置,连接AC'.
(1)AA'与CC'的位置关系为 ;
(2)求证:∠A'+∠CAC'+∠AC'C=180°;
(3)设∠ACB=y,试探索∠CAC'与x,y之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明对我校七年级(1)班喜欢什么球类运动的调查,下列图形中的左图是小明对所调查结果的条形统计图.
(1)问七年级(1)班共有多少学生?
(2)请你改用扇形统计图来表示我校七年级(1)班同学喜欢的球类运动.
(3)从统计图中你可以获得哪些信息?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com