精英家教网 > 初中数学 > 题目详情
已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC精英家教网,连接DF,并延长DF交AB的延长线于点E,连接CE.
(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;
(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.
分析:(1)S△EFC=
1
2
FC•高h,S△ABF=
1
2
BF•高h′,而△EFC与△ABF的面积相等且当F为BC的中点,所以必须证明h=h′,而h=ABsinα,
h′=EBsinα,所以证明方向转化为求证EB=AB,而EB=CD,可利用证△EBF≌△DCF来解答,因此便可求证所求;
(2)由于△ABC和△CDE为等底等高三角形,所以S△ABC=S△CDE,又因为△ACF和△CDF同底等高,所以S△AFC=S△CDF
∴S△ABC-S△AFC=S△CDE-S△CDF,即S△ABF=S△EFC
解答:(1)证明:∵点F为BC的中点,
∴BF=CF=
1
2
BC=
a
2

又∵BF∥AD,
∴BE=AB=b,
∴A,E两点到BC的距离相等,都为bsinα,(3分)
则S△ABF=
1
2
a
2
•bsinα=
1
4
absinα,
S△EFC=
1
2
a
2
•bsinα=
1
4
absinα,
∴S△ABF=S△EFC;(5分)

(2)解:
法一:当F为BC上任意一点时,
设BF=x,则FC=a-x,
∵四边形ABCD是平行四边形,
BF
AD
=
BE
BE+AB
,∴
x
a
=
BE
BE+b

BE=
bx
a-x
,(7分)
在△EFC中,FC边上的高h1=BEsinα,
h1=
bxsinα
a-x

S△EFC=
1
2
FC•h1=
1
2
(a-x)•
bxsinα
a-x
=
1
2
bxsinα
,(9分)
又在△ABF中,BF边上的高h2=bsinα,
∴S△ABF=
1
2
bxsinα,
∴S△ABF=S△EFC;(11分)
法二:∵ABCD为平行四边形,
∴S△ABC=S△CDE=
1
2
absinα,
又∵S△AFC=S△CDF
∴S△ABC-S△AFC=S△CDE-S△CDF
即S△ABF=S△EFC.(11分)
点评:此题考查了平行四边形的基本性质和三角形全等的判定,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知平行四边形ABCD.
(1)用直尺和圆规作出∠ABC的平分线BE,交AD的延长线于点E,交DC于点F(保留作图痕迹,不写作法);
(2)在第(1)题的条件下,求证:△ABE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

49、如图,已知平行四边形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6cm,AD=2cm,求DE、EF、FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.

查看答案和解析>>

同步练习册答案