精英家教网 > 初中数学 > 题目详情
a=2
3
,b=3
2
时,计算
a2+b2
的结果是(  )
A.
30
B.5
5
C.6
6
D.11
11
a=2
3
,b=3
2
时,
a2+b2
=
(2
3
)
2
+(3
2
)2
=
12+18
=
30

故选A.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

a=2
3
,b=3
2
时,计算
a2+b2
的结果是(  )
A、
30
B、5
5
C、6
6
D、11
11

查看答案和解析>>

科目:初中数学 来源: 题型:

用所学的数学知识计算
(1)有8箱苹果,以每箱5㎏为标准,称重记录如下:(超过标准的为正数)1.5,-1,3,0,0.5,-1.5,2,-0.5. 8箱苹果的总质量水是多少?
(2)阅读下面材料并完成填空
你能比较两个数20012002与20022001的大小吗?
为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n的大小,然后,从分析n=1,n=2,n=3,n=4,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
I、通过计算,比较下列①~③各组中两个数的大小(在横线上填上>,=,<)
①12
21
②23
32
③34
43
④45>54
⑤56>65
⑥67>76
II、从①小题的结果经过归纳,可以猜出nn+1与(n+1)n的大小关系是
当1≤n≤2时,nn+1<(n+1)n,当n>2时,nn+1>(n+1)n
当1≤n≤2时,nn+1<(n+1)n,当n>2时,nn+1>(n+1)n

III、根据上面归纳猜想得到的一般结论,可以得到20012002
20022001

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20102011和20112010的大小吗?为了解决问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n是正整数),然后,从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳,猜想出结论:已通过计算,比较下列各组数中两个数的大小(填>,<,=)
①12
21;②23
32;③34
43;④45
54;⑤56
65
(1)从上面的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系是
当n<3时,nn+1<(n+1)n,当n>3时,nn+1>(n+1)n
当n<3时,nn+1<(n+1)n,当n>3时,nn+1>(n+1)n

(2)根据上面的归纳猜想得到的一般结论,试比较下列两个数的大小:20102011
20112010

查看答案和解析>>

科目:初中数学 来源: 题型:

你能比较20082009与20092008的大小吗?
为了解决这个问题,我们先写出它的一般形式,即比较nn+1与(n+1)n(n是自然数)的大小.然后我们分析当n=1,n=2,n暨3,…时从中发现的规律,经归纳、猜想得出结论:
(1)通过计算,比较下列各组中两个数的大小,在空格中填上“<”或“>”或“=”.12
22;23
 32;34
43;45
54
(2)对第(1)的结果经过归纳、猜想得到的一般结论,请你比较20082009与20092008的大小关系是
20082009>20092008
20082009>20092008

查看答案和解析>>

同步练习册答案