精英家教网 > 初中数学 > 题目详情

如图,AD⊥BC,DE⊥AB,DF⊥AC,D、E、F是垂足,BD=CD,那么图中的全等三角形有________.

△ABD≌△ACD,△BDE≌△CDF,△ADE≌△ADF
分析:先利用边角边定理判断△ABD和△ACD全等,再根据全等三角形的对应角相等得到∠B=∠C,∠BAD=∠CAD,然后利用角角边定理即可判定△BDE≌△CDF,△ADE≌△ADF.
解答:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△ABD和△ACD中,
∴△ABD≌△ACD(SAS);
∴∠B=∠C,∠BAD=∠CAD,
∵DE⊥AB,DF⊥AC,
∴∠BED=∠AED=∠AFD=∠CFD=90°,
∴△BDE≌△CDF,△ADE≌△ADF.
故填:△ABD≌△ACD,△BDE≌△CDF,△ADE≌△ADF.
点评:本题主要考查全等三角形的判定,先证明△ABD和△ACD全等是解本题的突破点,寻找时要由易到难,逐步深入,做到不重不漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,AD∥BC,则下列式子成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图:AD∥BC,AB=AC,∠BAC=80°,则∠DAC=
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AD⊥BC,DE∥AB,则∠CDE与∠BAD的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,AD=BC,要得到△ABD≌△CDB,可以添加角的条件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.

查看答案和解析>>

同步练习册答案