精英家教网 > 初中数学 > 题目详情
某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为获利最大,商店应将价格定为多少元?
(3)为了让利顾客,在利润相同的情况下,请为商店选择正确的出售方式,并求出此时的售价.
(1)当x>120时,
y1=-10x2+2500x-150000;
当100<x<120时,y2=-30x2+6900x-390000;

(2)y1=-10x2+2500x-150000=-10(x-125)2+6250;
y2=-30x2+6900x-390000=-30(x-115)2+6750;
6750>6250,
所以当售价定为115元获得最大为6750元;

(3)由y1=y2
得-10x2+2500x-150000=-30x2+6900x-390000,
解得x1=120,x2=100(不合题意,舍去);
答:此时的售价为120元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
3
2
).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=
2
x
(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=
k
x
(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图1,过点E(0,-1)作平行于x轴的直线l,抛物线y=
1
4
x2上的两点A、B的横坐标分别为-1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF.
(1)求点A、B、F的坐标;
(2)求证:CF⊥DF;
(3)点P是抛物线y=
1
4
x2对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=-
m-4
8
x2+
2m-7
3
x+m2-6m+8
经过原点O,点B(-2,n)在这条抛物线上.
(1)求抛物线的解析式;
(2)将直线y=-2x沿y轴向下平移b个单位后得到直线l,若直线l经过B点,求n、b的值;
(3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A1,A2,A3,…,A2006是x轴上的点,且OA1=A1A2=A2A3=…=A2005A2006=1,分别过点A1,A2,A3,…,A2006作x轴的垂线交二次函数y=x2(x≥0)的图象于点P1,P2,P3,…,P2006点,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…,依次进行下去,最后记△P2005B2005P2006的面积为S2006,则S2006-S2005=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.
(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2
(2)能围成总面积为240m2的长方形花圃吗?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

安庆迎江区农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长24米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形养圈的面积.
(2)请你判断他的设计方案是否使矩形养圈的面积最大?如果不是最大,应怎样设计?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

进入三月以来,重庆的气温渐渐升高,羽绒服进入了销售淡季.为此重庆某百货公司对某品牌的A款羽绒服进行了清仓大处理.已知A款羽绒服的销售价格y元与第x天(1≤x≤10,且为整数)之间的关系可用如下表表示:
时间(x天)12345678910
售价y(元/件)550500450400350300300300300300
在销售的前6天,A款羽绒服的销售数量z1(件)与第x天的关系式为z1=20x+40(1≤x≤6且为整数);后4天(7≤x≤10,且为整数)的销售数量z2件与第x天的关系如图所示
(1)请观察题中表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z2与x之间的一次函数关系式.
(2)若A款羽绒服的进价为每件200元,该专柜共有5个员工,每位员工每天的工资为100元,该专柜每天所需的固定支出为1000元,请结合上述信息,求这10天内哪天的利润最大,并求出这个最大利润.
(3)在第(2)问的前提下,为了提高收益、减少库存,商场在第11天作出以下决定:第11-15天继续维持A款羽绒服的售价,结果每天的销售量均与第10天的持平,同时在第11-15天将B款羽绒服也作为促销商品,而且作为销售重点,已知B款羽绒服的进价仍为200元每件,销售价格比A款羽绒服取得最大利润当天的售价降低了a%,而每天销售量则比第10天A款羽绒服的销量提高了2a%,最后5天A、B两款羽绒服的总利润为27100元,请你参考以下数据,计算出a的值.
参考数据:2.52=6.25,2.62=6.76,2.72=7.29,2.82=7.84.

查看答案和解析>>

同步练习册答案