精英家教网 > 初中数学 > 题目详情
安庆迎江区农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长24米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形养圈的面积.
(2)请你判断他的设计方案是否使矩形养圈的面积最大?如果不是最大,应怎样设计?请说明理由.
(1)设设计的矩形羊圈的宽为x米,则长为(40-2x)米,
则矩形羊圈的面积为:S=(40-2x)x=(40x-2x2)米2
(2)∵S=(40x-2x2),
∴当x=-
40
2×(-2)
=10时,S最大,此时长为40-2×10=20(米),
∴他的设计方案不是最大,应设计为长为20米,宽10米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A、B两点.
(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)在(2)的基础上,设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l经过A(3,0),B(0,3)两点,且与二次函数y=x2+1的图象,在第一象限内相交于点C.求:
(1)△AOC的面积;
(2)二次函数图象的顶点与点A、B组成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为获利最大,商店应将价格定为多少元?
(3)为了让利顾客,在利润相同的情况下,请为商店选择正确的出售方式,并求出此时的售价.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一块矩形场地,如图所示,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.
(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式;求出此函数与x轴的交点坐标,并写出自变量的取值范围;
(2)当x是多少时,种植菊花的面积最大,最大面积是多少?请在格点图中画出此函数图象的草图(提示:找三点描出图象即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一个小服装厂生产某种风衣,售价P(元/件)与月销售量x(件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.
(1)该厂的月产量为多大时,获得的月利润为1300元?
(2)当月产量为多少时,可获得最大月利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:函数y=-
1
4
x2+x+a的图象的最高点在x轴上.
(1)求a;
(2)如图所示,设二次函数y=-
1
4
x2+x+a图象与y轴的交点为A,顶点为B,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点C关于直线PB的对称点为M,试探索点M是否在抛物线y=-
1
4
x2+x+a上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,用50m长的篱笆围成中间有一道篱笆墙的养殖场,设它的长为xm,养殖场的一边靠墙.
(1)要使养殖场的面积最大,养殖场的长应为多少米?
(2)若中间有n(n是大于1的整数)道篱笆隔墙,要使养殖场面积最大,养殖场的长应为多少米?比较(1)和(2),你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y1=x2+(m+1)x+m-4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=-1.
(1)求m的值;
(2)画出这条抛物线;
(2)若直线y2=kx+b过点B且与抛物线交于点P(-2m,-3m),根据图象回答:当x取什么值时,y1≥y2

查看答案和解析>>

同步练习册答案