精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,D点在抛物线y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是抛物线与y轴的交点.

(1)求直线AC和抛物线的解析式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?
(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ的面积.

【答案】
(1)

解:如图1,∵tan∠ACB=

=

∴设AO=3x,CO=4x,∵OB=OC,

∴BO=4x,

∴AB2=AO2+BO2

则25=25x2

解得:x=1(负数舍去),

∴AO=3,BO=CO=4,

∴A(0,3),B(﹣4,0),C(4,0),

∴设直线AC的解析式为:y=kx+d,

解得:

故直线AC的解析式为:y=﹣ x+3;

∵四边形ABCD是平行四边形,

∴BC=AD=8,

∴D(8,3),

∵B,D点都在抛物线y= x2+bx+c上,

解得:

故此抛物线解析式为:y= x2 x﹣3


(2)

解:①如图2,∵OA=3,OB=4,

∴AC=5.

设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,

∵PQ⊥AC,

∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,

∴△APQ∽△CAO,

= ,即 =

解得:t=

②如图3,

设点P运动了t秒时,当QP⊥AD,此时AP=t,CQ=t,AQ=5﹣t,

∵QP⊥AD,

∴∠APQ=∠AOC=90°,∠PAQ=∠ACO,

∴△AQP∽△CAO,

= ,即 =

解得:t=

即当点P运动到距离A点 个单位长度处,△APQ是直角三角形


(3)

解:如图4,∵S四边形PDCQ+SAPQ=SACD,且SACD= ×8×3=12,

∴当△APQ的面积最大时,四边形PDCQ的面积最小,

当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,

设△APQ底边AP上的高为h,作QH⊥AD于点H,

由△AQH∽△CAO可得: =

解得:h= (5﹣t),

∴SAPQ= (5﹣t)= (﹣t2+5t)=﹣ (t﹣ 2+

∴当t= 时,SAPQ达到最大值 ,此时S四边形PDCQ=12﹣ =

故当点P运动到距离点A, 个单位处时,四边形PDCQ面积最小,

则AQ=QC=

故△CMQ的面积为: SAMC= × ×4×6=6.


【解析】(1)首先利用锐角三角函数关系得出A,C点坐标,再求出一次函数解析式,根据平行四边形的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式;(2)设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO或△AQP∽△CAO,利用对应边成比例可求出t的值,继而确定点P的位置;(3)只需使△APQ的面积最大,就能满足四边形PDCQ的面积最小,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO,利用对应边成比例得出h的表达式,继而表示出△APQ的面积表达式,即可得出四边形PDCQ的最小值,也可确定点P的位置,进而得出Q的位置,进而得出△CMQ的面积.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.

(1)若AB=2 ,求BC的长;
(2)如图1,当点G在AC上时,求证:BD= CG;
(3)如图2,当点G在AC的垂直平分线上时,直接写出 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,抛物线 交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.

(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: ﹣3tan30°+(π﹣4)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,D点在抛物线y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是抛物线与y轴的交点.

(1)求直线AC和抛物线的解析式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?
(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( )

A.甲先到达终点
B.前30分钟,甲在乙的前面
C.第48分钟时,两人第一次相遇
D.这次比赛的全程是28千米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)

查看答案和解析>>

同步练习册答案