精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为(

A.4
B.6
C.3
D.3

【答案】B
【解析】解:∵∠ACB=90°,∠B=60°,
∴∠BAC=30°,
∴AB=2BC=2×2=4,
∵△ABC绕点C顺时针旋转得到△A′B′C′,
∴A′B′=AB=4,B′C=BC=2,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,
∴△CAA′为等腰三角形,
∴∠CAA′=∠A′=30°,
∵A、B′、A′在同一条直线上,
∴∠A′B′C=∠B′AC+∠B′CA,
∴∠B′CA=60°﹣30°=30°,
∴B′A=B′C=2,
∴AA′=AB′+A′B′=2+4=6.
故选B.
【考点精析】关于本题考查的旋转的性质,需要了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图,现将这四个全图等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积(  )

A. 6 B. 12 C. 24 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】残缺的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.测得AB=24cm,CD=8cm.求这个圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.

(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,BAC=90°,AB=AC,ADBC,垂足是D,AE平分BAD,交BC于点E.在ABC外有一点F,使FAAE,FCBC.

(1)求证:BE=CF;

(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:MEBC;DE=DN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值: 其中x的值从不等式组的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC与△CDE均是等边三角形,点BCE在同一条直线上,AEBD交于点OAECD交于点GACBD交于点F,连接OCFG,则下列结论:AE=BD;②AG=BF;③FGBE;④∠BOC=∠EOC.其中正确结论的个数为

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知相交直线AB和CD及另一直线MN,如果要在MN上找出与AB,CD距离相等的点,则这样的点至少有_____个,最多有_____个.

查看答案和解析>>

同步练习册答案