精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下五个结论:
(1)AE=CF;(2)∠APE=∠CPF;(3)三角形EPF是等腰直角三角形;(4)S四边形AEPF=
12
S△ABC;(5)EF=AP,
其中正确的有
4
4
个.
分析:(1)通过证明△AEP≌△CFP就可以得出AE=CF,
(2)由∠EPA+∠FPA=90°,∠CPF+∠FPA=90°,就可以得出结论;
(3)由△AEP≌△CFP就可以PE=PF,即可得出结论;
(4)由S四边形AEPF=S△APE+S△APF.就可以得出S四边形AEPF=S△CPF+S△APF,就可以得出结论,
(5)由条件知AP=
1
2
BC,当EF是△ABC的中位线时才有EF=AP,其他情况EF≠AP.
解答:解:(1)∵∠EPA+∠FPA=∠EPF=90°,∠CPF+∠FPA=90°,
∴∠APE=∠CPF.故(1)正确.
∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°.
∵P是BC的中点,
∴BP=CP=AP=
1
2
BC.∠BAP=∠CAP=45°.
∴.∠BAP=∠C.
在△AEP和△CFP中
∠APE=∠CPF
AP=CP
∠BAP=∠C

∴△AEP≌△CFP(ASA),
∴AE=CF,PE=PF,S△AEP=S△CFP,故(2)正确.
∴△EPF是等腰直角三角形.故(3)正确.
∵S四边形AEPF=S△APE+S△APF
∴S四边形AEPF=S△CPF+S△APF=S△FAE=
1
2
S△ABC.故(4)正确.
∵△ABC是等腰直角三角形,P是BC的中点,
∴AP=
1
2
BC,
∵EF不是△ABC的中位线,
∴EF≠AP,故(5)错误;
∴正确的共有4个.
故答案为4.
点评:本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,中位线的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案