【题目】如图,在△ABC中,∠ACB=120°,BC=2AC.
(1)利用尺规作等腰△DBC,使点D、A在直线BC的同侧,且DB=BC,∠DBC=∠ACB(保留作图痕迹,不写画法);
(2)设(1)中所作的△DBC的边DC交AB于E点,求证:DE=3CE.
【答案】(1)作图见解析;(2)证明见解析.
【解析】试题分析:(1)按照题意画出相应的图形,如图所示;
(2)利用等腰三角形BCD的性质、△DBC的内角和定理和图形中的角与角间的数量关系来求∠ACE的度数;过点B作BM⊥DC于点M.由全等三角形△BME与△ACE的对应边相等推知ME=CE=MC.然后根据等腰三角形“三合一”的性质证得DM=MC,最后由等量代换证得结论.
试题解析:(1)如图所示,根据题意画出图形;
(2)∵BD=BC(已知),
∴∠D=∠BCD(等边对等角).
又∵∠DBC=120°,∠D+∠BCD+∠DBC=180°(三角形内角和定理),
∴∠D=∠BCD=30°.
∵∠ACB=120°,∠ACB=∠ACE+∠BCD,
∴∠ACE=90°,
过点B作BM⊥DC于点M,
在Rt△BMC中,由∠BCD=30°,得BM=BC,
∵BC=2AC,
∴AC=BC,
∴BM=AC,
在△BME与△ACE中,
∵,
∴△BME≌△ACE(AAS),
∴ME=CE=MC.
∵BD=BC,BM⊥DC,
∴DM=MC,
∴ME=CE=DM,
∴DE=3CE.
科目:初中数学 来源: 题型:
【题目】某酒家为了了解市民对去年销量较好的五仁馅、豆沙馅、红枣馅、双黄馅四种不同口味月饼(以下分别用A,B,C,D表示)的喜爱情况,在节前对人口总数8000人的某社区市民进行了抽样情况调查,绘制成如图的两幅统计图(尚不完整),请根据信息回答:
(1)将两幅不完整的图补充完整,并估计该社区爱吃D型月饼的人数;
(2)若有外型完全相同的A,B,C,D月饼各一个,小王吃了两个,求她第二个吃到的月饼恰好是C型的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知反比例函数:y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).
(1)分别求反比例函数和一次函数的解析式;
(2)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M,N各位于哪个象限,并简要说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com