精英家教网 > 初中数学 > 题目详情

【题目】盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:

摸棋的次数n

100

200

300

500

800

1000

摸到黑棋的次数m

24

51

76

124

201

250

摸到黑棋的频率(精确到0.001)

0.240

0.255

0.253

0.248

0.251

0.250

(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是   ;(精确到0.01)

(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由

【答案】(1)0.25;(2).

【解析】

大量重复试验下摸球的频率可以估计摸球的概率;

画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解.

(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,

故答案为:0.25;

(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,

画树状图如下:

由表可知,所有等可能结果共有12种情况,

其中这两枚棋颜色不同的有6种结果,

所以这两枚棋颜色不同的概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某批发城在冬天到来之际进了一批保暖衣,男生的保暖衣每件价格60元,女生的保暖衣每件价格40元,第一批共购买100件.

1)第一批购买的保暖衣的总费用不超过5400元,求女生保暖衣最少购买多少件?

2)第二批购买保暖衣,购买男、女生保暖衣的件数比为,价格保持第一批的价格不变;第三批购买男生保暖衣的价格在第一批购买的价格上每件减少了 ,女生保暖衣的价格比第一批购买的价格上每件增加了元,男生保暖衣的数量比第二批增加了,女生保暖衣的数量比第二批减少了,第二批与第三批购买保暖衣的总费用相同,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC在平面直角坐标系中,点AB分别在x轴和y轴上,且OAOB,边AC所在直线解析式为yx,若ABC的内心在y轴上,则tanACB的值为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是

(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,把△ABCA点顺时针方向旋转得到△ADE,连接BD,CE交于点F.

(1)求证:△AEC≌△ADB;

(2)若AB=,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c 如图所示直线x=-1是其对称轴

1确定abcΔ=b2-4ac的符号

2求证a-b+c>0

3当x取何值时,y>0;当x取何值时y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农作物的生长率P与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数刻画;当25≤t≤37时可近似用函数刻画.

(1)h的值.

(2)按照经验,该作物提前上市的天数m()与生长率P满足函数关系:

生长率P

0.2

0.25

0.3

0.35

提前上市的天数m(天)

0

5

10

15

①请运用已学的知识,求m关于P的函数表达式;

②请用含的代数式表示m

(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w()与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+x4x轴交于ABAB的左侧),与y轴交于点C,抛物线上的点E的横坐标为3,过点E作直线l1x轴.

1)点P为抛物线上的动点,且在直线AC的下方,点MN分别为x轴,直线l1上的动点,且MNx轴,当△APC面积最大时,求PM+MN+EN的最小值;

2)过(1)中的点PPDAC,垂足为F,且直线PDy轴交于点D,把△DFC绕顶点F旋转45°,得到△D'FC',再把△D'FC'沿直线PD平移至△DFC″,在平面上是否存在点K,使得以OC″,D″,K为顶点的四边形为菱形?若存在直接写出点K的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A0.5x1B1x1.5C1.5x2D2x2.5E2.5x3,制作成两幅不完整的统计图(如图).

请根据图中提供的信息,解答下列问题:

1)学生会随机调查了   名学生;

2)补全频数分布直方图;

3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?

查看答案和解析>>

同步练习册答案