精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.

(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.
(2)若α为锐角,tanα= ,当AE取得最小值时,求正方形OEFG的面积.
(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为 :1?若能,求点P的坐标;若不能,试说明理由

【答案】
(1)

解:如图1,

过点E作EH⊥OA于点H,EF与y轴的交点为M.

∵OE=OA,α=60°,

∴△AEO为正三角形,

∴OH=3,EH= =3

∴E(﹣3,3 ).

∵∠AOM=90°,

∴∠EOM=30°.

在Rt△EOM中,

∵cos∠EOM=

=

∴OM=4

∴M(0,4 ).

设直线EF的函数表达式为y=kx+4

∵该直线过点E(﹣3,3 ),

∴﹣3k+4 =3

解得k=

所以,直线EF的函数表达式为y= x+4


(2)

解:如图2,

射线OQ与OA的夹角为α( α为锐角,tanα ).

无论正方形边长为多少,绕点O旋转角α后得到正方

形OEFG的顶点E在射线OQ上,

∴当AE⊥OQ时,线段AE的长最小.

在Rt△AOE中,设AE=a,则OE=2a,

∴a2+(2a)2=62,解得a1= ,a2=﹣ (舍去),

∴OE=2a=

,∴S正方形OEFG=OE2=


(3)

解:设正方形边长为m.

当点F落在y轴正半轴时.

如图3,

当P与F重合时,△PEO是等腰直角三角形,有 = =

在Rt△AOP中,∠APO=45°,OP=OA=6,

∴点P1的坐标为(0,6).

在图3的基础上,

当减小正方形边长时,

点P在边FG 上,△OEP的其中两边之比不可能为 :1;

当增加正方形边长时,存在 = (图4)和 = (图5)两种情况.

如图4,

△EFP是等腰直角三角形,

=

=

此时有AP∥OF.

在Rt△AOE中,∠AOE=45°,

∴OE= OA=6

∴PE= OE=12,PA=PE+AE=18,

∴点P2的坐标为(﹣6,18).

如图5,

过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.

在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2

在Rt△PEF中,PE2=PF2+EF2=m2+n2

= 时,

∴PO2=2PE2

∴2m2+2mn+n2=2(m2+n2),得n=2m.

∵EO∥PH,

∴△AOE∽△AHP,

=

∴AH=4OA=24,

即OH=18,

∴m=9

在等腰Rt△PRH中,PR=HR= PH=36,

∴OR=RH﹣OH=18,

∴点P3的坐标为(﹣18,36).

当点F落在y轴负半轴时,

如图6,

P与A重合时,在Rt△POG中,OP= OG,

又∵正方形OGFE中,OG=OE,

∴OP= OE.

∴点P4的坐标为(﹣6,0).

在图6的基础上,当正方形边长减小时,△OEP的其中

两边之比不可能为 :1;当正方形边长增加时,存在 = (图7)这一种情况.

如图7,过P作PR⊥x轴于点R,

设PG=n.

在Rt△OPG中,PO2=PG2+OG2=n2+m2

在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2

= 时,

∴PE2=2PO2

∴2m2+2mn+n2=2n2+2m2

∴n=2m,

由于NG=OG=m,则PN=NG=m,

∵OE∥PN,∴△AOE∽△ANP,∴ =1,

即AN=OA=6.

在等腰Rt△ONG中,ON= m,

∴12= m,

∴m=6

在等腰Rt△PRN中,RN=PR=6,

∴点P5的坐标为(﹣18,6).

所以,△OEP的其中两边的比能为 :1,点P的坐标是:P1(0,6),P2(﹣6,18),

P3(﹣18,36),P4(﹣6,0),P5(﹣18,6)


【解析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为 :1分三种情况进行计算即可.此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解本题的关键是灵活运用勾股定理进行计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:

设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.这样小明就找到了一种把a+b的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a= , b= .

(2)利用所探索的结论,找一组正整数a、b、m、n填空: + = ( + )2;(答案不唯一)

(3)若a+4=(m+n)2 ,且a、m、n均为正整数,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)在这次抽样调查中,一共调查了多少名学生?

(2)请把折线统计图(图1)补充完整;

(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;

(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.

(1)求出a,b的值;

(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.

①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?

②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20,购买3棵榕树和2棵香樟树共需340.

(1)榕树和香樟树的单价各是多少?

(2)根据学校实际情况,需购买两种树苗共150,总费用不超过10840,且购买香樟树的棵数不少于榕树的1.5,请你算算该校本次购买榕树和香樟树共有哪几种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,是真命题的是(

①面积相等的两个直角三角形全等;

②对角线互相垂直的四边形是正方形;

③将抛物线 向左平移4个单位,再向上平移1个单位可得到抛物线

④两圆的半径Rr分别是方程x2-3x+2=0 的两根,且圆心距d=3则两圆外切.

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=2AB,点E,F分别是AD,BC的中点,连接AF与BE,CE与DF分别交于点M,N两点,则四边形EMFN是(  )

A. 正方形 B. 菱形 C. 矩形 D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是矩形,点在线段的延长线上,连接于点,点的中点.

)求证:

)若,点的中点,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

已知:如图1,直线ABCD,点EABCD之间的一点,连接BEDE得到∠BED

求证:∠BED =B+D.

1

小冰是这样做的:

证明:过点EEFAB,则有∠BEF=B

ABCDEFCD

∴∠FED=D

∴∠BEF +FED =B+D

即∠BED=B+D

请利用材料中的结论,完成下面的问题:

已知:直线 ABCD,直线MN分别与ABCD交于点EF

(1)如图2,BEF和∠EFD的平分线交于点G猜想∠G的度数,并证明你的猜想;

(2)如图3,EG1EG2为∠BEF内满足∠1=2的两条线,分别与∠EFD的平分线交于点G1G2求证:∠FG1 E+G2=180°.

查看答案和解析>>

同步练习册答案