精英家教网 > 初中数学 > 题目详情

【题目】如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为_____

【答案】3

【解析】

连接CO,过点AAD⊥x轴于点D,过点CCE⊥x轴于点E,

∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,

∴CO⊥AB,∠CAB=30°,

则∠AOD+∠COE=90°,

∵∠DAO+∠AOD=90°,

∴∠DAO=∠COE,

又∵∠ADO=∠CEO=90°,

∴△AOD∽△OCE,

=tan60°=

= =3,

∵点A是双曲线y=- 在第二象限分支上的一个动点,

∴S△AOD=×|xy|=

∴S△EOC= ,即×OE×CE=

∴k=OE×CE=3,

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】20199月,在郑州举行的第十一届全国少数民族运动会的龙舟比赛中,甲、乙两队在米的赛道上,所划行的路程与时间之间的函数关系式如图所示,下列说法错误的是(

A.乙队比甲队提前到达终点

B.当乙队划行时,此时落后甲队

C.后,乙队比甲队每分钟快

D.开始,甲队若要与乙队同时到达终点,甲队的速度需提高到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:

结合以上信息,回答问题:

1a=______b=______c=______

2)请你补全频数分布直方图.

3)试估计该年级女同学中身高在160165cm的同学约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某批乒乓球的质量检验结果如下:

抽取的乒乓球数n

200

500

1000

1500

2000

优等品频数m

188

471

946

1426

1898

优等品频率

0.940

0.942

0.946

0.951

0.949

(1)画出这批乒乓球优等品频率的折线统计图;

(2)这批乒乓球优等品的概率的估计值是多少?

(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.

求从袋中摸出一个球是黄球的概率;

现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于问至少取出了多少个黑球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C,E,F,B在同一直线上,点A,DBC异侧,AB∥CD,AE=DF,∠A=∠D.

(1)求证:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC

(1)求证:∠BAC=CBP

(2)求证:PB2=PCPA

(3)当AC=6,CP=3时,求sinPAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点Px轴上的一个动点.

(1)求此抛物线的解析式;

(2)当PA+PB的值最小时,求点P的坐标;

(3)抛物线上是否存在一点Q(QB不重合),使CDQ的面积等于BCD的面积?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案