精英家教网 > 初中数学 > 题目详情
精英家教网如图,正比例函数y=kx与反比例函数y=
m
x
的图象相交于A、B两点,AC⊥y轴,垂足为C,若△ABC的面积为4,则此反比例函数解析式为(  )
A、y=
4
x
B、y=-
4
x
C、y=
2
x
D、y=-
2
x
分析:首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于2,然后由反比例函数y=
m
x
的比例系数k的几何意义,可知△AOC的面积等于
1
2
|m|,从而求出k的值,即得到这个反比例函数的解析式.
解答:精英家教网解:∵反比例函数与正比例函数的图象相交于A、B两点,
∴A、B两点关于原点对称,
∴OA=OB,
∴△BOC的面积=△AOC的面积=4÷2=2,
又∵A是反比例函数y=
m
x
图象上的点,且AC⊥y轴于点C,
∴△AOC的面积=
1
2
|m|,
1
2
|m|=2,
∵m>0,
∴m=4.
故这个反比例函数的解析式为 y=
4
x

故选A.
点评:本题主要考查了三角形一边上的中线将三角形的面积二等分及反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=
1
2
|k|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=
1
2
x
的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
1
x
的图象相交于A、C两点,过A作x轴的垂线,交x轴于点B,连接BC.若△ABC的面积为S,则(  )
A、S=1B、S=2
C、S=3D、S的值不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
5x
的图象相交于A、C两点,过A作x轴的垂线交x轴于B,连接BC,则△ABC的面积S=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正比例函数y=
1
2
x的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△AOM的面积为1,点B(-1,t)为反比例函数在第三象限图象上的点.
(1)求反比例函数的解析式;
(2)试求出点A、点B的坐标;
(3)在y轴上求一点P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,正比例函数y=k1x的图象与反比例函数y=
k2x
的图象相交于点A、B,点A 在第一象限,且点A 的横坐标为1,作AH垂直于x轴,垂足为点H,S△AOH=1.
(1)求AH的长;
(2)求这两个函数的解析式;
(3)如果△OAC是以OA为腰的等腰三角形,且点C在x轴上,求点C的坐标.

查看答案和解析>>

同步练习册答案