精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=
 
度时,四边形EDBC是等腰梯形,此时AD的长为
 

②当α=
 
度时,四边形EDBC是直角梯形,此时AD的长为
 

(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
分析:(1)根据旋转的性质和等腰梯形的性质,①假设四边形EDBC是等腰梯形,根据题目已知条件及外角和定理可求α,AD;②假设四边形EDBC是直角梯形,根据题目已知条件及内角和定理可求α,AD.
(2)根据∠α=∠ACB=90°先证明四边形EDBC是平行四边形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的长度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比较得BD=BC,可证明四边形EDBC是菱形.
解答:解:(1)①当四边形EDBC是等腰梯形时,
∵∠EDB=∠B=60°,而∠A=30°,
∴α=∠EDB-∠A=30°,
∴△ADO是等腰三角形,
∴AD=OD,
过点O作OF∥BC,
∵BC⊥AC,
∴OF⊥AC,
∴OF是△ABC的中位线,
∴OF=
1
2
BC=1,
∵α=∠EDB-∠A=30°,
∴∠ODF=60°=∠DOF=60°,
∴△ODF是等边三角形,
∴OD=OF=DF=1,
∵∠A=∠α=30°,
∴AD=OD=1;

②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,
根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=
1
2
AC×
3
2
=1.5.

(2)当∠α=90°时,四边形EDBC是菱形.精英家教网
∵∠α=∠ACB=90°,
∴BC∥ED,
∵CE∥AB,
∴四边形EDBC是平行四边形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,
∴AB=4,AC=2
3

∴AO=
1
2
AC
=
3

在Rt△AOD中,∠A=30°,OD=
1
2
AD,
AD=
AO2+OD2
=
(
3
)
2
+(
1
2
AD)
2

∴AD=2,
∴BD=2,
∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形.
点评:解决此问题,既要弄清等腰梯形、直角梯形及菱形的判定,又要掌握有关旋转的知识,在直角三角形中,30度角所对的直角边等于斜边的一半,也是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案