【题目】如图,在口ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.
(1)试说明在旋转过程中,AF与CE总保持相等;
(2)证明:当旋转角为90时,四边形ABEF是平行四边形;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.
【答案】(1)理由见解析;(2)证明见解析;(3)理由见解析;旋转角为45°.
【解析】
试题分析:(1)根据平行四边形的对边平行可得AD∥BC,对角线互相平分可得OA=OC,再根据两直线平行,内错角相等求出∠1=∠2,然后利用“角边角”证明△AOF和△COE全等,根据全等三角形对应边相等即可得到AF=CE;
(2)根据垂直的定义可得∠BAO=90°,然后求出∠BAO=∠AOF,再根据内错角相等,两直线平行可得AB∥EF,然后根据平行四边形的对边平行求出AF∥BE,再根据两组对边分别平行的四边形是平行四边形证明;
(3)根据(1)的结论可得AF=CE,再求出DF∥BE,DF=BE,然后根据一组对边平行且相等的四边形是平行四边形求出四边形BEDF平行四边形,再求出对角线互相垂直的平行四边形是菱形可得EF⊥BD时,四边形BEDF是菱形;根据勾股定理列式求出AC=2,再根据平行四边形的对角线互相平分求出AO=1,然后求出∠AOB=45°,再根据旋转的定义求出旋转角即可.
试题解析:(1)在ABCD中,AD∥BC,OA=OC,
∴∠1=∠2,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴AF=CE;
(2)由题意,∠AOF=90°(如图2),
又∵AB⊥AC,
∴∠BAO=90°,
∠AOF=90°,
∴∠BAO=∠AOF,
∴AB∥EF,
∵四边形ABCD是平行四边形,
∴AD∥BC,
即:AF∥BE,
∵AB∥EF,AF∥BE,
∴四边形ABEF是平行四边形;
(3)当EF⊥BD时,四边形BEDF是菱形(如图3).
∵ABCD,AF=CE,
∴AD∥BC,AD=BC,
∴DF∥BE,DF=BE,
∴四边形BEDF是平行四边形,
又∵EF⊥BD,
∴BEDF是菱形,
∵AB⊥AC,
∴在△ABC中,∠BAC=90°,
∴BC2=AB2+AC2,
∵AB=1,BC=,
∴AC=,
∵四边形ABCD是平行四边形,
∴OA=AC=×2=1,
∵在△AOB中,AB=AO=1,∠BAO=90°,
∴∠1=45°,
∵EF⊥BD,
∴∠BOF=90°,
∴∠2=∠BOF-∠1=90°-45°=45°,
即:旋转角为45°.
科目:初中数学 来源: 题型:
【题目】演唱比赛,7位评委给1号选手的评分如下:9.3,8.9,9.2,9.4,9.2,9.7,9.4,规定去掉一个最高分和一个最低分,剩余得分的平均数作选手的最后得分.那么,1号选手的最后得分是________分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD的边AD在y轴上,抛物线y=a(x﹣2)2﹣1经过点A、B,与x相交于点E、F,且其顶点M在CD上.
(1)请直接写出点A的坐标 ,并写出a的值 ;
(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.
①当线段PH=2GH时,求点P的坐标;
②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com