精英家教网 > 初中数学 > 题目详情
17.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F,
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

分析 (1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;
(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;
(3)借助(1)和(2)的证明方法容易证明结论.

解答 (1)证明:在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,$\left\{\begin{array}{l}{AB=BC}&{\;}\\{∠ABP=∠CBP}&{\;}\\{PB=PB}&{\;}\end{array}\right.$,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;

(2)解:由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∴∠DAP=∠DCP,
∵PA=PE,
∴∠DAP=∠E,
∴∠DCP=∠E,
∵∠CFP=∠EFD(对顶角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠E,
即∠CPF=∠EDF=90°

(3)解:AP=CE;理由如下:
在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,$\left\{\begin{array}{l}{AB=BC}&{\;}\\{∠ABP=∠CBP}&{\;}\\{PB=PB}&{\;}\end{array}\right.$,
∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠BCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DCP,
∵PA=PC,
∴∠DAP=∠AEP,
∴∠DCP=∠AEP
∵∠CFP=∠EFD(对顶角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠AEP,
即∠CPF=∠EDF=180°-∠ADC=180°-120°=60°,
∴△EPC是等边三角形,
∴PC=CE,
∴AP=CE.

点评 本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠ABP=∠CBP是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,在△ABC中,AC=3cm,∠ACB=90°,∠ABC=60°,将△ABC绕点B顺时针旋转至△A′BC′,点C′在直线AB上,则边AC扫过区域(图中阴影部分)的面积为3π  cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如何在一个三角形内部画一个内接正方形?小聪对其进行如下探索:
第1步:如图1,在△ABC内部先作一个正方形DEFG,使得EF落在BC边上,D落在AB边上,他认为作这样的正方形比较容易实现,但是该正方形顶点G并没有落在AC边上;
第2步:他认为只要将正方形DEFG逐渐放大,就会实现点G落在AC边上的目的,于是他作了射线BG,交AC于点N;
第3步:他认为只要点N确定了,那么正方形NQPM就很容易得到了,于是就实现了在三角形内部画一个内接正方形的目的了.
借鉴小聪的探索过程,请你利用图2和图3,在扇形AOB内部作两个不同类型的内接正方形,并指出上述画图中主要利用了什么样的几何变换?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.求1+2+22+23+…+22017的值,可令S=1+2+22+23+…+22017,则2S=2+22+23+…+22018,因此2S-S=22018-1,仿照以上推理,计算出1+5+52+53+…+52017的值为$\frac{{5}^{2018}-1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.均匀地向一个瓶子注水,最后把瓶子注满,在注水过程中,水面高度h随时间变化规律如图1,则这个瓶子的形状是如图2中的B.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,直线y=-x+2与y=kx+b(k≠0)的交点的横坐标为1,则关于x的不等式组0≤-x+2<kx+b的解集为(  )
A.x<1B.x>1C.1<x≤2D.1≤x<2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图放置的正方形ABCD,正方形DCC1D1,正方形D1C1C2D2,…都是边长为$\sqrt{3}$的正方形,点A在y轴上,点B,C,C1,C2,…,都在直线y=$\frac{\sqrt{3}}{3}$x上,则D的坐标是($\sqrt{3}$,1+$\frac{4\sqrt{3}}{3}$),Dn的坐标是($\sqrt{3}$(n+1),$\frac{3(n+1)+4\sqrt{3}}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.菲尔兹奖是国际上有崇高声誉的一个数学奖项,下面的数据是从1936年至2014年菲尔兹奖得主获奖时的年龄(岁):
                       29  39  35  33  39  27  33  35  31  31  37  32  38  36
                       31  39  32  38  37  34  29  34  38  32  35  36  33  32
                       29  35  36  37  39  38  40  38  37  39  38  34  33  40
                       36  36  37  40  31  38  38  40  40  37  35  40  39  37
请根据上述数据,解答下列问题:
小彬按“组距为5”列出了如图的频数分布表
分组频数
A:25~30
B:30~3515
C:35~4031
D:40~456
合计56
(1)每组数据含最小值不含最大值,请将表中空缺的部分补充完整,并补全频数分布直方图;
(2)根据(1)中的频数分布直方图描述这56位菲尔兹奖得主获奖时的年龄的分布特征;
(3)在(1)的基础上,小彬又画了如图所示的扇形统计图,图中获奖年龄在30~35岁的人数约占获奖总人数的26.8%(百分号前保留1位小数);C组所在扇形对应的圆心角度数约为199°(保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列各式中:$\sqrt{a}$,$\sqrt{\frac{1}{2}}$,$\sqrt{{x}^{2}}$,$\root{3}{2}$,$\sqrt{x+2}$,其中是二次根式的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案