精英家教网 > 初中数学 > 题目详情

在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:

(1)本次抽样调查的样本容量是多少?

(2)请将条形统计图补充完整.

(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.

(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.


解:(1)样本容量是:30÷20%=150;

(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75.

(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;

(4)12000×=6000(人)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.

小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.

小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.

【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;

请运用上述解答中所积累的经验和方法完成下列两题:

【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;

【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是(  )

 

A.

m+n<0

B.

﹣m<﹣n

C.

|m|﹣|n|>0

D.

2+m<2+n

查看答案和解析>>

科目:初中数学 来源: 题型:


已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:= 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.

(1)求抛物线的表达式;

(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;

(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:


下列说法正确的是(  )

 

A.

多边形的外角和与边数有关

 

B.

平行四边形既是轴对称图形,又是中心对称图形

 

C.

当两圆相切时,圆心距等于两圆的半径之和

 

D.

三角形的任何两边的和大于第三边

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.

(1)请直接写出A、B两点的坐标;

(2)求抛物线的解析式;

(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;

(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:


22=  

查看答案和解析>>

同步练习册答案