精英家教网 > 初中数学 > 题目详情
如图所示,求直线l1、l2的交点坐标.
分析:求两条直线的交点,要先根据待定系数法确定两条直线的函数式,从而得出.
解答:解:由图象可知l1过(0,5)和(5,0)两点.
l2过(-2,0)和(0,1).
根据待定系数法可得出l1的解析式应该是:y=-x+5,
l2的解析式应该是:y=
1
2
x+1,
两直线的交点满足方程组
y=-x+5
y=
1
2
x+1

解得:
x=
8
3
y=
7
3

直线l1、l2的交点坐标(
8
3
7
3
).
点评:本题可用待定系数法来确定两条直线的解析式,再联立求得交点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两直线l1,l2分别经过点A(3,0),点B(-1,0),并且当两直线同时相交于y负半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点D,如图所示.
(1)求证:△AOC∽△COB;
(2)求出抛物线的函数解析式;
(3)当直线l1绕点C顺时针旋转α(0°<α<90°)时,它与抛物线的另一个交点为P(x,y),求四边形APCB面积S关于x的函数解析式,并求S的最大值;
(4)当直线l1绕点C旋转时,它与抛物线的另一个交点为E,请找出使△ECD为等腰三角形的点E,并求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①所示,直线l1:y=3x+3与x轴交于B点,与直线l2交于y轴上一点A,且l2与x轴的交点为C(1,0).
(1)求证:∠ABC=∠ACB;
(2)如图②所示,过x轴上一点D(-3,0)作DE⊥AC于E,DE交y轴于F点,交AB于G点,求G点的坐标.
(3)如图③所示,将△ABC沿x轴向左平移,AC边与y轴交于一点P(P不同于A、C两点),过P点作一直线与AB的延长线交于Q点,与x轴交于M点,且CP=BQ,在△ABC平移的过程中,线段OM的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,求直线l1、l2的交点坐标.

查看答案和解析>>

同步练习册答案