精英家教网 > 初中数学 > 题目详情
20、如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.
(1)求证:EG=CF;
(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.
分析:(1)G、E分别为AB、BC的中点,由正方形的性质可知AG=EC,△BEG为等腰直角三角形,则∠AGE=180°-45°=135°,而∠ECF=90°+45°=135°,得∠AGE=∠ECF,再利用互余关系,得∠GAE=90°-∠AEB=∠CEF,可证△AGE≌△ECF,得出结论;
(2)旋转后,∠C′AE=∠CFE=∠GEA,根据内错角相等,两直线平行,可判断旋转后CF与EG平行.
解答:(1)证明:∵正方形ABCD,点G,E为边AB、BC中点,
∴AG=EC,△BEG为等腰直角三角形,
∴∠AGE=180°-45°=135°,
又∵CF为正方形外角平分线,
∴∠ECF=90°+45°=135°,
∴∠AGE=∠ECF,
∵∠AEF=90°,
∴∠GAE=90°-∠AEB=∠CEF,
∴△AGE≌△ECF,
∴EG=CF;

(2)画图如图所示,
旋转后CF与EG平行.
点评:本题考查了旋转的性质,正方形的性质,全等三角形的判定与性质.关键是根据正方形的性质寻找判定三角形全等的条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连接FE分别交AB,CD于点H,G.
(1)观察图中有
2
对全等三角形;
(2)聪明的你如果还有时间,请在上图中连接AF,CE,你将发现图中出现了更多的全等三角形.请在下面的横线上再写出两对与(1)不同的全等三角形(不用证明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,四边形ABCD为⊙O的内接四边形,E为AB延长线的上一点,∠CBE=40°,则∠AOC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形ABCD中,E、F分别为AD、BC的中点.
(1)当AB∥CD而AD与BC不平行时,四边形ABCD称为
 
形,线段EF叫做其
 
,EF与AB+CD的数量关系为
 

(2)当AB与CD不平行,AD与BC也不平行时,猜想EF与AB+CD的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,E、F是AB、BC的中点,连接EC交DB、DF于G、H,则EG:GH:HC=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源:新课标 读想练同步测试 七年级数学(下) 北师大版 题型:044

如图所示,四边形AB-CD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,试说明,无论点P在BC上如何移动,总有α+β=∠B.

查看答案和解析>>

同步练习册答案