精英家教网 > 初中数学 > 题目详情
(2010•奉贤区二模)已知,矩形OABC在平面直角坐标系中位置如图所示,A的坐标(4,0),C的坐标(0,-2),直线y=-x与边BC相交于点D.
(1)求点D的坐标;
(2)抛物线y=ax2+bx+c经过点A、D、O,求此抛物线的表达式;
(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

【答案】分析:(1)由于BC∥x轴,那么B、C两点的纵坐标相同,已知了点C的坐标,将其纵坐标代入直线OD的解析式中,即可求得点D的坐标;
(2)已知抛物线图象上的A、O、D三点坐标,可利用待定系数法求得该抛物线的解析式;
(3)此题应分作三种情况考虑:
①所求的梯形以OA为底,那么OA∥DM,由于抛物线是轴对称图形,那么D点关于抛物线对称轴的对称点一定满足M点的要求,由此可得M点的坐标;
②所求的梯形以OD为底,那么OD∥AM,所以直线AM、直线OD的斜率相同,已知点AD的坐标,即可确定直线AM的解析式,联立抛物线的解析式,即可确定点M的坐标;
③所求的梯形以AD为底,那么AD∥OM,参照②的解题思路,可先求出直线AD的解析式,进而确定直线OM的解析式,联立抛物线的解析式,即可求得点M的坐标.
解答:解:(1)∵D在BC上,BC∥x轴,C(0,-2),
∴设D(x,-2)(1分)
∵D在直线y=-x上,
∴-2=-x,x=3,(3分)
∴D(3,-2);(4分)

(2)∵抛物线y=ax2+bx+c经过点A、D、O;

解得:;(7分)
故所求的二次函数解析式为y=-x;(8分)

(3)假设存在点M,使O、D、A、M为顶点的四边形是梯形;
①若以OA为底,BC∥x轴,抛物线是轴对称图形,
∴点M的坐标为(1,-2);(9分)
②若以OD为底,过点A作OD的平行线交抛物线为点M,
∵直线OD为y=-x,
∴直线AM为y=-x+
∴-x+=-x
解得:x1=-1,x2=4,(舍去)
∴点M的坐标为(-1,);(11分)
③若以AD为底,过点O作AD的平行线交抛物线为点M,
∵直线AD为y=2x-8,
∴直线OM为y=2x,
∴2x=-x,
解得:x1=7,x2=0(舍去);
∴点M的坐标为(7,14).(12分)
∴综上所述,当点M的坐标为(1,-2)、(-1,)、(7,14)时,以O、D、A、M为顶点的四边形是梯形.
点评:此题考查了矩形的性质、二次函数解析式的确定、梯形的判定、函数图象交点坐标的求法等知识.同时还考查了分类讨论的数学思想,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:2011年上海市奉贤区中考数学二模试卷(解析版) 题型:解答题

(2010•奉贤区二模)已知:直角坐标系xoy中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线y=-x2+bx+c与x轴交于A,B两点(点A在点B的右侧),且经过点C,
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年上海市奉贤区中考数学二模试卷(解析版) 题型:解答题

(2010•奉贤区二模)已知:在Rt△ABC中,∠ACB=90°,BC=6,AC=8,过点A作直线MN⊥AC,点E是直线MN上的一个动点,
(1)如图1,如果点E是射线AM上的一个动点(不与点A重合),连接CE交AB于点P.若AE为x,AP为y,求y关于x的函数解析式,并写出它的定义域;
(2)在射线AM上是否存在一点E,使以点E、A、P组成的三角形与△ABC相似,若存在求AE的长,若不存在,请说明理由;
(3)如图2,过点B作BD⊥MN,垂足为D,以点C为圆心,若以AC为半径的⊙C与以ED为半径的⊙E相切,求⊙E的半径.

查看答案和解析>>

科目:初中数学 来源:2010年上海市奉贤区中考数学二模试卷(解析版) 题型:填空题

(2010•奉贤区二模)已知函数f(x)=,则f(-1)=   

查看答案和解析>>

科目:初中数学 来源:2011年广东省潮州市松昌中学九年级第五阶段考试数学试卷(解析版) 题型:填空题

(2010•奉贤区二模)某班共有40名同学,其中有2名同学习惯用左手吃饭,其余同学都习惯用右手吃饭,老师随机抽1名同学,习惯用左手吃饭的同学被选中的概率是   

查看答案和解析>>

同步练习册答案