精英家教网 > 初中数学 > 题目详情
(2010•奉贤区二模)已知:在Rt△ABC中,∠ACB=90°,BC=6,AC=8,过点A作直线MN⊥AC,点E是直线MN上的一个动点,
(1)如图1,如果点E是射线AM上的一个动点(不与点A重合),连接CE交AB于点P.若AE为x,AP为y,求y关于x的函数解析式,并写出它的定义域;
(2)在射线AM上是否存在一点E,使以点E、A、P组成的三角形与△ABC相似,若存在求AE的长,若不存在,请说明理由;
(3)如图2,过点B作BD⊥MN,垂足为D,以点C为圆心,若以AC为半径的⊙C与以ED为半径的⊙E相切,求⊙E的半径.
【答案】分析:(1)首先证明AM∥BC,△BCP∽△APE,可得AE:BC=AP:BP,然后根据题意代入相关数值即得y关于x的函数解析式.
(2)先假设存在点E,使△ABC∽△EAP,则有AB:BC=AE:AP,把第一问的结果代入可得到一个一元二次方程,解此方程看结果是否符合题意,合题意,则存在此点,否则不存在此点.
(3)此问要分情况讨论:当点E在射线AD上,⊙C与⊙E外切时;当点E在线段AD上,⊙C与⊙E外切时;当点E在射线DA上,⊙C与⊙E内切时;根据解直角三角形分别求解,不符合题意的解舍去.
解答:解:(1)∵AM⊥AC,∠ACB=90°∴AM∥BC,
=,(1分)
∵BC=6,AC=8,∴AB=10,(2分)
∵AE=x,AP=y,∴=
∴y=(x>0);(4分)

(2)假设在射线AM上存在一点E,使以点E、A、P组成的三角形与△ABC相似;
∵AM∥BC∴∠B=∠BAE,
∵∠ACB=90°,∠AEP≠90°,
∴△ABC∽△EAP,(6分)
=(7分)
=解得:x1=,x2=0(舍去)(8分)
∴当AE的长为时,△ABC∽△EAP;

(3)∵⊙C与⊙E相切,AE=x
①当点E在射线AD上,⊙C与⊙E外切时,ED=x-6,EC=x-6+8=x+2,
在直角三角形AEC中,AC2+AE2=EC2
∴x2+82=(x+2)2解得:x=15∴⊙E的半径为9.(10分)
②当点E在线段AD上,⊙C与⊙E外切时,ED=6-x,EC=6-x+8=14-x,
在直角三角形AEC中,AC2+AE2=EC2
∴x2+82=(14-x)2解得:x=∴⊙E的半径为.(12分)
③当点E在射线DA上,⊙C与⊙E内切时,ED=x+6,EC=x+6-8=x-2,
在直角三角形AEC中,AC2+AE2=EC2
∴x2+82=(x-2)2解得:x=-15(舍去),
∴内切不成立(14分)
∴当⊙C与⊙E相切时,⊙E的半径为9或
点评:此题难度较大,综合考查函数、方程与圆的相切,三角形相似的判定与性质、平行线性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2011年上海市奉贤区中考数学二模试卷(解析版) 题型:解答题

(2010•奉贤区二模)已知:直角坐标系xoy中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线y=-x2+bx+c与x轴交于A,B两点(点A在点B的右侧),且经过点C,
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年上海市奉贤区中考数学二模试卷(解析版) 题型:解答题

(2010•奉贤区二模)已知,矩形OABC在平面直角坐标系中位置如图所示,A的坐标(4,0),C的坐标(0,-2),直线y=-x与边BC相交于点D.
(1)求点D的坐标;
(2)抛物线y=ax2+bx+c经过点A、D、O,求此抛物线的表达式;
(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年上海市奉贤区中考数学二模试卷(解析版) 题型:填空题

(2010•奉贤区二模)已知函数f(x)=,则f(-1)=   

查看答案和解析>>

科目:初中数学 来源:2011年广东省潮州市松昌中学九年级第五阶段考试数学试卷(解析版) 题型:填空题

(2010•奉贤区二模)某班共有40名同学,其中有2名同学习惯用左手吃饭,其余同学都习惯用右手吃饭,老师随机抽1名同学,习惯用左手吃饭的同学被选中的概率是   

查看答案和解析>>

同步练习册答案