精英家教网 > 初中数学 > 题目详情
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,
(1)求出m的值;
(2)求抛物线与x轴的交点坐标;
(3)直接写出x取何值时,抛物线位于x轴上方.
(1)将(0,3)代入抛物线的解析式得:m=3.

(2)抛物线的解析式为:y=-x2+2x+3,
令y=0,则有:-x2+2x+3=0,解得x1=3,x2=-1,
∴抛物线与x轴交点坐标为(3,0),(-1,0).

(3)由图可知,当-1<x<3时,抛物线位于x轴上方.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,与x轴另一交点为D,与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式;
(2)如图,连接AC,在抛物线上是否存在点P,使∠ACD+∠ACP=45°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,
①点E在运动过程中四边形OEAF的面积是否发生变化,并说明理由;
②当EF分四边形OEAF的面积为1:2两部分时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

用“?”定义一种新运算:对于任意实数m,n和抛物线y=-ax2,当y=ax2?(m,n)后都可以得到y=a(x-m)2+n.例如:当y=2x2?(3,4)后都可以得到y=2(x-3)2+4.若函数y=x2?(1,n)得到的函数如图所示,则n=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:一次函数y=-
1
2
x+2
的图象与x轴、y轴的交点分别为B、C,二次函数的关系式为y=ax2-3ax-4a(a<0).
(1)说明:二次函数的图象过B点,并求出二次函数的图象与x轴的另一个交点A的坐标;
(2)若二次函数图象的顶点,在一次函数图象的下方,求a的取值范围;
(3)若二次函数的图象过点C,则在此二次函数的图象上是否存在点D,使得△ABD是直角三角形?若存在,求出所有满足条件的点D坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线的顶点坐标是(2,-1),且经过点A(5,8)
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴任一点,连接AP、BP.试求当AP+BP取得最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,桥拱是抛物线形,其函数的表达式为y=-
1
4
x2
,当水位线在AB位置时,水面宽12m,这时水面离桥顶的高度为(  )
A.3mB.2
6
m
C.4
3
m
D.9m

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm.窗户的适光面积为ym2,y与x的函数图象如图2所示.
(1)当窗户透光面积最大时,求窗框的两边长;
(2)要使窗户透光面积不小于1m2.则窗框的一边长x应该在什么范围内取值?

查看答案和解析>>

同步练习册答案