精英家教网 > 初中数学 > 题目详情
已知等腰三角形底边上的高为4,周长为16,则这个三角形面积为
12
12
分析:作出图形,根据等腰三角形的三线合一的性质可得BD=
1
2
BC,设BD=x,根据三角形的周长表示出AB,然后利用勾股定理列式求出BD的长,再求出BC的长,然后利用三角形的面积公式列式进行计算即可得解.
解答:解:如图,∵AD是底边BC上的高,
∴BD=
1
2
BC,
设BD=x,
∵△ABC的周长为16,
∴AB+BD=
1
2
×16=8,
∴AB=8-x,
在Rt△ABD中,AB2=BD2+AD2
即(8-x)2=x2+42
解得x=3,
∴BC=2BD=2×3=6,
∴三角形面积=
1
2
BC•AD=
1
2
×6×4=12.
故答案为:12.
点评:本题主要考查了等腰三角形三线合一的性质,勾股定理的应用,根据勾股定理列出方程是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•无锡)如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).
(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,在直角梯形ABCD中,已知AD∥BC,AB=3,AD=1,BC=6,∠A=∠B=90°.设动点P、Q、R在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底平行.
(1)当点P在AB边上时,在图中画出一个符合条件的△PQR (不必说明画法);
(2)当点P在BC边或CD边上时,求BP的长.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏无锡卷)数学(带解析) 题型:解答题

如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).
(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江宁波城区五校联考初三第一学期12月月考数学试卷(解析版) 题型:解答题

如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点)。已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;

(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?S最大值是多少?

 

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏无锡卷)数学(解析版) 题型:解答题

如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;

(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?

 

查看答案和解析>>

同步练习册答案