【题目】如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其 中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)当t=2秒时,求PQ的长;
(2)求出发时间为几秒时,△PQB是等腰三角形?
(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.(直接写答案)
【答案】(1)2;(2)秒;(3)5.5秒或6秒或6.6秒.
【解析】试题分析:(1)可求得AP和BQ,则可求得BP,在Rt△BPQ中,由勾股定理可求得PQ的长;
(2)用t可分别表示出BP和BQ,根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,可求得t;
(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.
试题解析:(1)(1)BQ=2×2=4cm,
BP=AB﹣AP=8﹣2×1=6cm,
∵∠B=90°,
在Rt△BPQ中,由勾股定理可得PQ=
(2)根据题意得:BQ=BP,
即2t=8﹣t,解得:t=;
即出发时间为秒时,△PQB是等腰三角形;
(3)分三种情况:
①当CQ=BQ时,如图1所示:则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,
∴∠A=∠ABQ
∴BQ=AQ,
∴CQ=AQ=5
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②当CQ=BC时,如图2所示:
则BC+CQ=12∴t=12÷2=6秒.
③当BC=BQ时,如图3所示:
过B点作BE⊥AC于点E,则BE=4.8(cm)
∴CE==3.6cm,
∴CQ=2CE=7.2cm,
∴BC+CQ=13.2cm,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时, △BCQ为等腰三角形.
科目:初中数学 来源: 题型:
【题目】为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.
阶梯 | 电量 | 电价 |
一档 | 0~180度 | 0.6元/度 |
二档 | 181~400度 | 二档电价 |
三档 | 401度及以上 | 三档电价 |
(1)请问表中二档电价、三档电价各是多少?
(2)小明家6月份用电560度,应交费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以点O为原点的直角坐标系中,一次函数y=-x+1的图象与x轴交于A,与y轴交于点B,点C在第二象限内且为直线AB上一点,OC=AB,反比例函数y=的图象经过点C,则k的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有理数乘方的符号法则:
(1)正数的任何次幂都是________;
(2)负数的奇次幂是________,负数的偶次幂是________;
(3)0的任何正整数次幂都是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题的个数为( )
①同位角相等;②从直线外一点到这条直线的垂线段,叫作这点到直线的距离;③平面内经过一点有且只有一条直线与已知直线平行;④平面内不相交的两条直线叫作平行线.
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com